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Knowledge graph embeddings (KGE) models such as ...

Complex Embeddings for Simple Link Prediction 2,142 citations

Théo Trouillon, Johannes Welbl, +2 authors Guillaume Bouchard * Published in International Conference on... 19 June 2016 Highly Influential Citations @ 576
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Knowledge graph embeddings (KGE) models such as ...

Complex Embeddings for Simple Link Prediction 2,142 citations

Théo Trouillon, Johannes Welbl, +2 authors Guillaume Bouchard « Published in International Conference on... 19 June 2016 * Highly Influential Citations @ 576
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... are difficult to interpret and compare

Arakelyan, Minervini, and Augenstein, Adapting Neural Link Predictors for Complex Query Answering, 2023
Zhu et al., “A Closer Look at Probability Calibration of Knowledge Graph Embedding”, 2023
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We would like probabilities instead !



n How to measure the confidence of predictions ?

and compare / combine scores
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n How to measure the confidence of predictions ?

and compare / combine scores

n How to guarantee the satisfaction of constraints ?

such as domain knowledge



Training is expensive
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How to measure the confidence of predictions ?

and compare / combine scores

How to guarantee the satisfaction of constraints ?

such as domain knowledge

How to scale to KGs with millions of entities ?

and be memory efficient
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n Generative models of triples (GeKCs)

calibrated probabilistic predictions, sampling of new triples
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From KGE models ...

KGE
models
e CP
e RESCAL
e TUCKER

o COMPLEX

Lacroix, Usunier, and Obozinski, “Canonical Tensor Decomposition for Knowledge Base Completion”, 2018
Nickel, Tresp, and Kriegel, “A Three-Way Model for Collective Learning on Multi-Relational Data”, 2011
Balazevic, Allen, and Hospedales, “TuckER: Tensor Factorization for Knowledge Graph Completion”, 2019
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From KGE models to circuits ...

KGE
models

e CP
e RESCAL
e TUCKER
e COMPLEX

Circuits

Lacroix, Usunier, and Obozinski, “Canonical Tensor Decomposition for Knowledge Base Completion”, 2018
Nickel, Tresp, and Kriegel, “A Three-Way Model for Collective Learning on Multi-Relational Data”, 2011

Balazevic, Allen, and Hospedales, “TuckER: Tensor Factorization for Knowledge Graph Completion”, 2019
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From KGE models to circuits ...
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... to probabilistic circuits

KGE
models

e CP
e RESCAL
e TUCKER
e COMPLEX

From scores ¢(s, r, 0) to triple probabilities p(s,, 0)

Choi, Vergari, and Broeck, “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 2020



... to probabilistic circuits

KGE
models

e CP
e RESCAL
e TUCKER
e COMPLEX

n Ensure ¢(s,7,0) >0, p(s,7,0) =

= o(s,1,0)

Choi, Vergari, and Broeck, “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 2020
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... to probabilistic circuits

KGE
models

e CP

““-IIIII.....
+*" e CP* .

GeKCs

. .~ Non-negative
e RESCAL [&" 4 RESCAL* Ky " restriction
e TUCKER “‘ e TUCKER" ,:
& *
e COMPLEX '..:_(_ZE)E/I_P_L_E_PQ"

Enforce non-negative embeddings

—> Less accurate on link prediction ...

Choi, Vergari, and Broeck, “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 2020 14



... to probabilistic circuits

KGE -
Circuits
models reeenn, i ircui GeKCs
o CP ‘0“‘ o CP* ..'0‘ 7 e CP? s+ Non-negative
e RESCAL » o RESCAL" . e RESCAL? “ restriction
o TUCKER %, ® TUCKER* & N\ TUCKER? s .
o + 2 > Squaring
o COMPLEX \l%a,¢ COMPLEX'+* ~ Eo&mg %

Square score functions (unrestricted embeddings)

——> Competitive on link prediction!

Choi, Vergari, and Broeck, “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 2020



... to probabilistic circuits

KGE .
models Circuits
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Choi, Vergari, and Broeck, “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 2020
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... thus requiring linear time !
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n Generative models for KGs (GeKCs)

calibrated probabilistic predictions, sampling of new triples

n Integrate constraints with guarantees

such as the domain schema

16
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Generative models for KGs (GeKCs)

calibrated probabilistic predictions, sampling of new triples

Integrate constraints with guarantees

such as the domain schema

Scale to KGs with millions of entities and triples

speed-up training and save memory

19



Speed-up training on large KGs
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Speed-up training on large KGs
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... by discriminative objectives,
generalised as a weighted pseudo-log-likelihood

Loy = Z wslogp(s | r,0) + w,logp(r | s,0) +w,logp(o| s,7)
(s,r,0)€D

Ruffinelli, Broscheit, and Gemulla, “You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings”, 2020
Chen et al., “Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations”, 2021 21



... by discriminative objectives,
generalised as a weighted pseudo-log-likelihood

Loy = Z wslogp(s | r,0) + w,logp(r | s,0) +w,logp(o| s,7)
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... by maximum-log-likelihood estimation

Ly = Z logp(s,r,0) = —|D|log Z + Z log ¢pc(s, 7, 0)

(s,r,0)€D (s,r,0)€D

Ruffinelli, Broscheit, and Gemulla, “You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings”, 2020
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Mean Reciprocal Rank (MRR) T

Model FB15k-237 WN18RR ogbl-biokg
CP 0.310 0.105 0.831
CP* 0.237 0.027 0.496
cpP? 0.315 0.104 0.848
ComplEx 0.342 0.471 0.829
ComplEx* 0.214 0.030 0.503
ComplEX2 0.334 0.420 0.858
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GeKCs are competitive with KGE models ...



Mean Reciprocal Rank (MRR) T

Model FB15k-237 WN18RR ogbl-biokg
CP 0.310 0.105 0.831
cpP* 0.237 0.027 ( 0.496
cp? 0.315 0.104 0.848
ComplEx 0.342 0.471 0.829
ComplEx” 0.214 0.030 ( 0.503
ComplEX2 0.334 0.420 0.858

... and achieve the best results on ogbl-biokg



Sampling triples

Kernel triple distance to measure their quality

Binkowski et al., “Demystifying MMD GANs", 2018
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Sampling triples

Kernel triple distance to measure their quality

Empirical KTD J,

Model FB15k-237 WN18RR ogbl-biokg

Uniform 0.589 0.766 1.822

PLL MLE PLL MLE PLL MLE

ComplEx? 0.326 0.102 0.338 0.278 0.104 0.034

Binkowski et al., “Demystifying MMD GANs", 2018
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n A generative perspective
of KGE models (GeKCs)

Reliable predictions
with logical constraints

Speed-up training
and reduce costs

24



n A generative perspective
of KGE models (GeKCs)

Reliable predictions
with logical constraints

Speed-up training
and reduce costs

more on circuits

A. Vergari, Y. Choi, and R. Peharz
Probabilistic Circuits: representations,
inference, learning and applications
Tutorial @ NeurlPS 2022

Z.Yu, M. Trapp and K. Kersting
Characteristic circuits
Oral @ NeurlIPS 2023
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n A generative perspective
of KGE models (GeKCs)

Reliable predictions
with logical constraints

Speed-up training
and reduce costs

april

april-tools.github.io

SSaT R

Poster Session 1 #1205

Code

¥ X @loreloc_
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Link prediction benchmarks

Mean Reciprocal Rank (MRR) T

FB15k-237 WN18RR ogbl-biokg
Model
PLL MLE PLL MLE PLL MLE
CP 0.310 — 0.105 — 0.831 —
cp* 0.237 0.230 0.027 0.026 0.496 0.501
CP? 0.315 0.282 0.104 0.091 0.848 0.829
ComplEx 0.342 — 0.471 — 0.829 —
ComplEx* 0.214 0.205 0.030 0.029 0.503 0.516
ComplEx? 0.334 0.300 0.420 0.391 0.858 0.840
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Instantiate GeKCs from KGE models

Mean Reciprocal Rank (MRR) T

FB15k-237 WN18RR ogbl-biokg
Model
PLL MLE PLL MLE PLL MLE
ComplEx 0.344 — 0.470 — 0.829 —
CompIEx2 0.333  0.301 0.416 0.390 0.859 0.839
CompIEx2 * 0.342 0.340 0.462 0.463 0.859 0.828
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Semantic consistency scores

Embedding size

Model k 10 50 200 1000

1 99.68 99.90 99.93 99.94

ComplEx 20 99.81 99.79 99.85 99.91

100 99.60 99.44 99.60 99.77

Sem@k scores T 1 82.50 94.22 99.30 99.50
CompIEx2 20 86.50 96.70 99.42 99.64

100 90.66 97.71 99.23 98.78

1 100.00 100.00 100.00 100.00

D-CompIExz 20 100.00 100.00 100.00 100.00

100 100.00 100.00 100.00 100.00

Hubert et al., “New Strategies for Learning Knowledge Graph Embeddings: The Recommendation Case”, 2022
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Logical constraints improve small GeKCs
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