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Linear case or RelU case

Gradient flow: Definition: Conserved functions
O0(1) = — V& (0(1)), 6(0) = 6, h(0(1)) = h(0,),V 6y, X, Y, 1
Main question: what are the conserved functions, how many are they? (0 : h(0) = h(6(0)))

Understanding implicit bias of
Applications: gradient descent.

Helping to analyze convergence.
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Example: 1D linear network

0= (u,v), g(0,x) = uvx.
A conserved function:

h(6’)=u2—v2=u§—vg

Ex y(u,v) = (uvx — y)?

UVX =y
90 = (l/lo, Vo)
Linear networks [1] RelLu networks [2]
W (U, V) = iy, uy) — (v, V) h(U, V) = llgll* = lIvell®

[1] Arora et al. On the optimization of deep networks: Implicit acceleration by over-parameterization, ICML, 2018
[2] Du et al. Algorithmic regularization in learning deep homogeneous models: Layers are automatically balanced, Neurips, 2018
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Objectives

10 : h(0) = h(6)}
Example: 1D linear network

0= (u,v), g(0,x) = uvx.

A conserved function:

o) = u* —v* =ug — v

Ex y(u,v) = (uvx — y)?

UVX =y
90 = (l/lo, Vo)
Linear networks [1] RelLu networks [2]
W (U, V) = iy, uy) — (v, V) h(U, V) = llgll* = lIvell®

Goal: Find a maximal set of ‘independent’ conserved functions
(hy, ..., hg) conserved = ®(hy, ..., hg) conserved

Definition of independence: (Vh,(0)); linearly independent V&

[1] Arora et al. On the optimization of deep networks: Implicit acceleration by over-parameterization, ICML, 2018
[2] Du et al. Algorithmic regularization in learning deep homogeneous models: Layers are automatically balanced, Neurips, 2018
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Problem abstraction

O(t) = w(0(r))  with vector field w(-), w(@) € W(6)

Definition: W(6) := Span {V%X,Y(Q) X, Y}

Proposition: h conserved < VO, Vh(0) L W(0)

10 1 h(0) = h(6(0))]
Question: Simpler expression of W(6) to find conserved functions?

Tool: Re-parametrization: g(@, x) = f(¢(0), x)

Linear networks Relu networks

g2(0,x)=UV'x g(0,x) = Z uRelu ((Vi’ x))
= Z Ly, 020 (”iViT) 2
(U, V)=UVT p(U,V) = (u),
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finite-dimensional C Wq)(Q) := range (0¢(Q)T)

Theorem: ~ W(0) = W (0) if Spanny(z, y) = whole space, for linear and 2-layer ReLU networks.

Consequence: under the same hypothesis, Definition: Conservation law A

h conserved < VO,Vh(O) L W, (0) vo,Vho) L W, (0)

Example: 1D example ~{ 2u v\ .
0= (u,v) Vh(@) o <—2V 1 <l/l> — 6g0(€)

g2(0,x) = uvx UVX =y

) o) = u*—v*=us5—v§
@U,v) =uv
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We can build some conservation laws

Consequence: as h conservation law < dp(0) Vh(0) = 0 (linear in A)

For a polynomial ¢, restricting to polynomials A: finite dimensional linear kernel

@ LSIDEICH A ALGO<1> returns all polynomial independent conservation laws

— lower bound on number of all (polynomial or not) independent conservation laws

— finds back all already known conserved functions [1, 2]:

Linear networks RelLu networks

h (U, V) = Qg wy) = (Vi vp) (U, V) = [lugl* = [Ivell?

[1] Arora et al. On the optimization of deep networks: Implicit acceleration by over-parameterization, ICML, 2018
[2] Du et al. Algorithmic regularization in learning deep homogeneous models: Layers are automatically balanced, Neurips, 2018
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Definition: Lie brackets NG %,
6 z /@
(Wi, wy () := ow,(0)w,(0) — ow,(8)w(O) /
Definition: Generated Lie algebra Lie(W,)
= |f [Wl’ Wz] — O

smallest space D W(p stable by [ -, - |

/Computationally tractable
Theorem: If dim <Lie(W(p)(9)>= K'is locally constant, @ 5D(_:|F'_

there are exactly D — K independent conservation laws £ ALGO<2> returns dim Lie(W,)()

Question: Have we found all conservation laws?

Proposition (for linear and ReLU networks):

> 2-layer case: analytic characterization of LieW,, LieW (6) and dimLieW,(0) I no other

conservation

|
> Deeper cases: numerical comparison with ALGO<1> and ALGO<2> e
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Conclusion

> Algorithm that builds polynomial conservation laws: lower bound
> Number of independent laws characterized by a Lie algebra
> Algorithm that computes this number

@ EEXJE https://github.com/sibyllema/Conservation laws
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