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Background: Anomaly Detection

« What are anomalies/outliers?

« An anomaly or an outlier is a data object that deviates R ,7 "'.\
significantly from the majority of the objects, as if it was o o ( ]
generated by a different mechanism. [1] ¢ ® N W4

® ®
. ® 0% o

- These anomalies can represent errors, but they can *% e e
also indicate critical, novel, or interesting findings. ® .

They may contain valuable information about ® ®
abnormal behavior or new trends. [2] ® ®

[1] Han, J., Kamber, M., and Pei, J. Data Mining: Concepts and Techniques, 3rd edition.
[2] GPT4



Background: Anomaly Detection

« Compare with other concepts

* Novel Detection: The training data is not polluted by outliers and we are interested Iin
detecting whether a new observation is an outlier.

« Out-Of-Distribution Detection: It is about identifying data that is different from the
data the model was trained on, regardless of how unusual or rare it is within its own
context.

« Imbalance Classification: It is a specific challenge in anomaly detection.

« Fraud Detection: It is a specific application of anomaly detection that focuses on
identifying fraudulent activities.



Graph-based Anomaly Detection

Graph-based Anomaly Detection (GAD) is the process of identifying uncommon graph objects,
such as nodes, edges, or substructures, that significantly deviate from the majority of reference
objects within a graph database.
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Application: GAD meets Language

« Spam-Review Filtering [1] » Fake News/Rumor Detection [2]

speculating on air.

‘, @MoonMetropolis @SkyNews but it should be confirmed 1st before i R21 ( D) @SajS4j o\nYeah, same as 9/11 ‘

(_@redtom43 @SkyNews The magazine has made fun of Muhammad. I'll be very

surprised if the shooter isn't an Isl: R CHETAC e

S r 4
R ; /QfL

Rumor: shgus:“:::h?;:xlgggi?:r::;: lvcv(:ell‘:la 5—s|(~) SkyNews guess who have done this again , your fellow Muslim
%ha.rlie Hebdo say Y mother fuckers , they will never stop till you submit to their evil cult .

Pt e
‘/“3 Rq.

7 ) Wow. Shocked. RT @SkyNews People have died in a shooting at the Paris
HQ of French weekly Charlie Hebdo, reports say http:/t.co/NPwObGQHv0

-’ ‘=) @SkyNews presumably Muslim? How do you arrive at that?

RA1 ( _) @redtom43 @SkyNews Perhaps them shouting 'we have

Ral avenged the Prophet' maybe. What do you think?? #Moron

' @ddemontgolfier @SkyNews why are you shocked??

R411 )
s =/ @TimGriffiths85 where was that reported? #dickface

Title: iPhone8, new, white

[1] (CIKM’19) Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks
[2] (AAAI'20) A Semi-Supervised Graph Attentive Network for Financial Fraud Detection



Application: GAD meets Fintech

* Anti-Money Laundering [1] * Financial Fraud Prevention [2]
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[1] (ADF@KDD’19) Anti-Money Laundering in Bitcoin: Experimenting with Graph Convolutional Networks
for Financial Forensics.
[2] (ICDM’19) A Semi-Supervised Graph Attentive Network for Financial Fraud Detection




Challenges of GAD: Imbalance

« Anomalous nodes typically constitute a small part of the total nodes, resulting in a significant
label imbalance.




Related Work: Imbalance-aware GNN
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[1] (WWW’21) Pick and choose: a gnn-based imbalanced learning approach for fraud detection.
[2] (WSDM’'21) GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks



Challenges of GAD: Camouflage

« Anomalous nodes can effectively camouflage their relations and features to be similar to
normal nodes.

» This demands attention to intentionally manipulated edges and node features.
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Figure 1: Two types of fraudster camouflage. (1) Feature cam-
ouflage: fraudsters add special characters to the text and
make it delusive for feature-based spam detectors. (2) Rela-
tion camouflage: center fraudster connects to many benign
entities under Relation II to attenuate its suspiciousness.



Related Work: Camouflage-resist GNN
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[1] (SIGIR’20) Alleviating the Inconsistency Problem of Applying Graph Neural Network to Fraud Detection
[2] (CIKM'20) Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters



Challenges of GAD: Heterophily

* The graph containing anomalies is often highly heterophily, with connected nodes having
distinct attributes and labels.

* This necessitates strategies to handle neighborhood feature disparities during message passing.
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Related Work: Heterophily-aware GNN
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Motivation |: Are we really making progress?

Hundreds of GAD methods, ranging from traditional approaches to modern Graph Neural
Networks (GNNs), have been developed.

* Which of them are truly effective?

» Most models were tested on a limited number of datasets, leaving their performance in a standard,
comprehensive setting largely unexplored.

Rethinking Graph Neural Networks for Anomaly Detection

{E#  Jianheng Tang, Jiajin Li, Zigi Gao, Jia Li v /. gra p h anoma |y detection ' _\E
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@17 Graph Neural Networks (GNNs) are widely applied for graph anomaly detection. As one [_J Refl n e I I St

of the key components for GNN design is to select a tailored spectral filter, we take the
first step towards analyzing anomalies via the lens of the graph spectrum. Our crucial
observation is the existence of anomalies will lead to the ‘right-shift phenomenon, that is,
the spectral energy distribution concentrates less on low frequencies and more on high
frequencies. This fact motivates us to propose the Beta Wavelet Graph Neural Network

(BWGNN). Indeed, BWGNN has spectral and spatial localized band-pass filters to better

handle the ‘right-shift phenomenon in anomalies. We demonstrate the effectiveness of

BWGNN on four large-scale anomaly detection datasets. Our code and data are

released at https://github. com/squareRoot3/Rethinking-Anomaly-Detection. I ‘| OO
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Motivation Il: Academia-Industry Gap

Despite the current academic dominance of Graph Neural Network (GNN)-based methods,
Industry professionals appear to place greater trust in non-deep-learning techniques.

 In the 7" Finvolution Data Science Competition, the task is to detect fraudulent users in an industry
financial dataset.

« 7 out of top 10 teams, including the champion, used tree ensembles in their solution.
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Motivation lll; Current Benchmark Results

« ADBench shows that non-deep-learning methods, especially ensemble
trees, perform better in unsupervised, semi-supervised, and supervised

settings.
14131211109 8 7 6 5 4 3 2 1
Avg_Rank|||||||| il lals Lala sl
DeepSVDD 2267 71.69 CBLOF
DAGMM 83.03 2.5 |Forestt
LODAT 6467 69.65 KNIN
COF 63.59 70.86 ECOD
OCSvM 67.56 70.93 PCA
OF 63.74 70.85 COPOD
HBOS 70.35 67.18 SOD

(a) Avg. rank (lower the better) and avg.
AUCROC (on each line) of unsupervised
methods; groups of algorithms not statisti-
cally different are connected horizontally.
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(b) Avg. AUCROC (on 57 datasets) vs. % of labeled anomalies (x-
axis); semi-supervised (left) and fully-supervised (right). Most label-
informed algorithms outperform the best unsupervised algorithm
CBLOF (denoted as the dashed line) with 10% labeled anomalies.

[1] (NeurlPS’22) ADBench: Anomaly Detection Benchmark



Motivation lll; Current Benchmark Results

10 Classification (15 datasets) 10 Regression (19 datasets)
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model (on valid set) up to this iteration
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Figure 1: Benchmark on medium-sized datasets, with only numerical features. Dotted lines
correspond to the score of the default hyperparameters, which is also the first random search iteration.
Each value corresponds to the test score of the best model (on the validation set) after a specific
number of random search iterations, averaged on 15 shuffles of the random search order. The ribbon
corresponds to the minimum and maximum scores on these 15 shuffles.

[1] (NeurlPS’22) Why do tree-based models still outperform deep learning on tabular data?



Neural Network v.s. Tree Ensembles on tabular data

 [1] explain why tree models still outperform deep learning on tabular data from the following
perspectives:

* NNs are biased to overly smooth solutions
« Uninformative features affect more MLP-like NNs
« Data are non invariant by rotation, so should be learning procedures
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Problems in Existing GAD Benchmarks

With a long history of traditional Graph Anomaly Detection (GAD) algorithms and recently
popular Graph Neural Networks (GNNSs), it is still not clear:

(1) how they perform under a standard comprehensive setting,

(2) whether GNNs outperform traditional algorithms such as tree ensembles,

(3) their efficiency on large-scale graphs.



Problems in Existing GAD Benchmarks

With a long history of traditional Graph Anomaly Detection (GAD) algorithms and recently

popular Graph Neural Networks (GNNSs), it is still not clear:

(1) how they perform under a standard comprehensive setting,
(2) whether GNNs outperform traditional algorithms such as tree ensembles,
(3) their efficiency on large-scale graphs.

The latest benchmark available for
GAD, BOND [1], only evaluates
unsupervised methods.

However, these methods have
inferior performance on large-scale
real-world datasets (e.g., DGraph).
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[1] (NeurlPS’22) BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs.



Supervised GAD vs. Unsupervised GAD

Why Supervised? Why Unsupervised?

* Performance: Many GAD models rely « Label Budget & Quality: the labels
on labeled data to boost their are expected to be noisy and of
performance. varying quality depending on the

 Model Selection: Hyper-parameter annotator.
search and model selection usually » Generalization Capability:
require labels. Supervised anomaly detection may be

limited in finding novel anomalies.

Semi-supervised setting may strike a balance between label annotation budgets and
model performance.

Our semi-supervised setting: The training/validation set has 20 anomalies and 80
normal nodes.



Introduction of GADBench

* We introduce GADBench, the first comprehensive benchmark for fully- and semi-supervised
anomalous node detection on static attributed graphs.

« To ensure a rigorous and fair comparison, we implement enhancements from dataset
selection, metric utilization, model training, and hyperparameter tuning.

* We integrate all models, datasets, and evaluation protocols mentioned into an open-source
repository: https://github.com/squareRoot3/GADBench



https://github.com/squareRoot3/GADBench

Introduction of GADBench

* We introduce GADBench, the first comprehensive benchmark for fully- and semi-supervised
anomalous node detection on static attributed graphs.

« To ensure a rigorous and fair comparison, we implement enhancements from dataset
selection, metric utilization, model training, and hyperparameter tuning.

* We integrate all models, datasets, and evaluation protocols mentioned into an open-source
repository: https://github.com/squareRoot3/GADBench

Table 1: Comparison of existing GAD benchmarks in terms of datasets, models, and scenarios.

Benchmark #Datasets Max. Nodes

&Toolbox (Organic) /Edges #Models Model Type Supervision Scenario
UGFraud [23] 1 (1) 45K/3M 6 GNN Unsupervised
DGFraud [22] 3 (1) 45K/3M 9 GNN Supervised

BOND [49] 9 (6) 3M/4AM 14 GNN, Classic Unsupervised

GADBench 10 (10) 5M/73M 29 GNN, Classic, Trees  Fully- and Semi-Supervised



https://github.com/squareRoot3/GADBench

Selected Models in GADBench

Table 2: Categorization of all models used in our evaluation.

Classic Methods MLP [67] , KNN [18], SVM [15], RF [12], XGBoost [16], XGBOD [93], NA [88]

GCN [39], SGC [84], GIN [83], GraphSAGE [30], GAT [76], GT [73], PNA [17]

Standard GNNs BGNN [37], RGCN [70], HGT [33]

GAS [44], DCI [82], PC-GNN [50], GAT-sep [99], BernNet [32], AMNet [13].

specialized GNNs = 5w GNN [74], GHRN [26]. CARE-GNN [22], H2-FDetector [72]

Tree Ensembles with

Neighbor Ageregate RF-Graph, XGB-Graph

Our evaluation encompasses a total of 29 models:

7 classic non-graph models

10 standard GNNs

10 state-of-the-art GNNs specifically designed for graph anomaly detection
2 tree ensembles with neighbor aggregation



Tree Ensembles With Neighbor Aggregation

» Inspired by a subclass of simplified GNNs with parameter-free massage passing, e.g.,

Simple Graph Convolution [1] and Propagational MLP [2]
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Tree Ensembles With Neighbor Aggregation

Our tree ensembles with neighbor aggregation adopt the following computational
paradigm:

h,g? = Aggregate{hgj_l) lv; € Neighbor(v;)}
Score(v;) = TreeEnsemble([h) ||k, || - ||hy]).

hgu) = X; denotes the initial node attributes.

h'" represents the node feature after I-layers of neighbor aggregation.

Aggregate(-) can take on any aggregation function such as mean, max, or sum pooling.
TreeEnsemble(-) can be any tree ensembles that takes the aggregated features as input to
predict the anomaly score of each node, e.g., Random Forest and XGBoost.



Selected Datasets in GADBench

In GADBench, we have collected 10 diverse and representative datasets, which are
chosen based on the following criteria:

 Organic anomalies. Datasets in GADBench exclusively contain anomalies that
naturally emerge in real-world scenarios, a distinction from previous studies that employ
synthetic anomalies for GAD evaluations.

« Various domains. Datasets in GADBench span multiple domains, including social
media, e-commerce, e-finance, crowd-sourcing, etc.

 Diverse scale and Imbalance ratio. GADBench datasets cover a wide scale, from tens
of thousands of nodes to millions, with different anomaly ratios.



Dataset Information

#Nodes #Edges #Feat. Anomaly Train Relation Concept
Weibo[84. 49] 8.405 407.963 400 10.3%  40%  Under Same Hashtag
Reddit[42. 49| 10,984 168,016 64 3.3%  40%  Under Same Post
Amazon|57.21] 11,944 4.398.392 25 95%  70% Review Correlation
YelpChi[63. 21] 45,954 3.846.979 32 14.5%  70% Reviewer Interaction
Tolokers|[64] 11,758 519,000 10 21.8%  40%  Work Collaboration
Questions[64] 48,921 153,540 301 3.0%  52%  Question Answering
T-Finance[71] 39,357 21,222,543 10 4.6%  50%  Transaction Record
Elliptic[78] 203,769 234,355 166 98%  50% Payment Flow
DGraph-Fin[35] 3,700,550 4.300,999 17 1.3%  70% Loan Guarantor
T-Social[71] 5,781,065 73,105,508 10 3.0%  40%  Social Friendship

Weibo, Reddit, Questions, and T-Social are designed to identify anomalous accounts on social media
platforms.

T-Finance, Elliptic, and DGraph-Fin concentrate on identifying fraudulent users, illicit entities and
overdue loans in financial networks,

Tolokers, Amazon and YelpChi aim to detect fraudulent workers, reviews and reviewers on crowd-
sourcing or e-commerce platforms.



Node Feature Information

Table 7: Overview of datasets in GADBench with their corresponding node feature types, feature
dimension, and detailed descriptions.

Dataset Node Feature Type #Dim. Detailed Feature Description
Reddit Text Embedding 64 LIWC text embedding for posts
Weibo Text Embedding 400 Bag-of-words features from posts
Amazon Misc. Information 25 Hand-crafted user features and statistics
YelpChi Misc. Information 32 Hand-crafted review features and statistics
Tolokers Misc. Information 10 User profile with task performance statistics
Questions Text Embedding 301 FastText embeddings for user descriptions
T-Finance Misc. Information 10 User profile details such as registration days
Elliptic Misc. Information 166 Timestamps and transaction information
DGraph-Fin | Misc. Information 17 Timestamps and user profiles details
T-Social Misc. Information 10 User profile details such as logging activities




Selected Metrics iIn GADBench

Area Under the Receiver Operating Characteristic Curve (AUROC)
Area Under the Prevision Recall Curve (AUPRC) estimated by average precision

Recall score within top-k predictions (Rec @K)

Running time and memory consumption

Among these metrics, AUROC primarily focuses on overall performance and is not sensitive
to top-K predictions, Rec@K only cares top-K performance, and AUPRC strikes a balance
between the two.



Semi-Supervised Results (Default Hyper-parameters)
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Fully-Supervised Results (Default Hyper-parameters)
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Fully-Supervised Results: Random Search
Hyperparameter Tuning

We run random search for 100 trials and save the best hyperparameter configuration on the validation set.

Model ‘ Reddit Weibo Amazon  Yelp T-Fin. Ellip. Tolo. Quest. DGraph. T-Social | Ave. Imp.
MLP 591 84.88 87.34 47.68 7421 43777 3829 1534 2.69 9.69 4446  2.67
KNN 6.12 81.12 84.41 5439 7497 6098 3530 15.37 1.67 36.32 | 46.04 9.13
SVM 6.88  84.91 85.80 41.01 78.10 2098 3790 15.37 2.65 OOT | 41.51 4.53
RF 4.63 9352 91.18 7777 81.99 7842 38.64 14.37 2.57 41.56 | 53.68 0.81

XGBoost 556 9449 91.88 84.00 8264 76.93 40.05 16.24 2.75 16.60 | 5495 0.73
XGBOD 8.27 9570 92,15 7946 8232 7486 40.65 16.08 1.95 OOT | 54.61 1.62
GCN 4.63 9464 4565 2088 78.22 2537 40.57 14.06 3.80 76.35 | 36.42 1.54
SGC 6.04 9858 4269 19.87 68.68 17.82 3959 10.53 249 16.28 | 34.03 6.48
GIN 6.41 91.67 84.61 33.63 7835 2621 4036 13.68 347 60.79 | 42.04 2.57
GraphSAGE | 556 94.02 8245 46.64 8471 57.82 5141 17.50 3.77 75.32 | 4932 1044
GAT 7.20 9291 87.94  43.62 8272 27.53 4525 15.51 3.85 32.07 | 45.17 2.80
GT 7.68 89.85 8490 4460 83.14 2590 4571 17.08 3.83 36.14 | 44.74 542
KNNGCN 444  96.13 77.25 2946 81.86 29.38 41.88 16.54 3.76 47.36 | 42,30  4.50
GAS 443 96.76  81.43 3511 8595 2980 4721 1548 3.65 62.36 | 4442 6.62
DCI 774  91.77 85.17 3988 63.68 2739 3773 14.59 3.31 1297 | 41.25 1.01

PCGNN 7.73  89.07 89.33 4451 8331 4266 4485 1559 342 80.29 | 46.72 4.69
BernNet 7.82 9238 84.80 5192 89.17 38.25 43.69 17.25 3.27 44.30 | 47.63 290
AMNet 7.87 9499 88.36 46.80 88.87 2518 40.74 15.63 2.81 3770 | 4570 249
GAT-sep 7.19 9340 8472 4549 84.01 2635 46.66 17.90 3.84 33.39 | 4550 298
BWGNN 8.32  94.01 91.48 61.53 89.38 29.31 4958 18.57 3.97 78.93 | 49.57 2.12
GHRN 4.66 9527 89.52 5542 87.60 4390 4745 18.31 3.80 86.78 | 49.55 1.77
RF-Graph 513 9695 90.53 8392 89.23 78.86 5234 1444 2.15 97.63 | 57.06 1.21

XGB-Graph | 529 97.06 9333 9111 90.12 77.78 53.92 18.19 3.79 97.34 | 58.95 1.34
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Benchmark Findings

* Findings I : Ensemble trees with neighbor aggregation have
superior performance.
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Benchmark Findings

* Findings II: Most standard GNNs prove unsuitable for GAD.
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Benchmark Findings

Findings III: Specialized GNNSs require hyperparameter tuning to achieve satisfactory performance.

Model | Reddit Weibo Amazon  Yelp TFin. Ellip. Tolo. Quest. DGraph. T-Social | Ave. Imp.
MLP 5901 8488 87.34 4768 7421 43777 3829 1534  2.69 0.60 | 44.46 2.67
KNN 6.12  81.12 8441 5439 7497 6098 3530 1537 1.67 36.32 | 46.04  9.13
SVM 6.88 8491 8580 41.01 7810 2098 3790 1537  2.65 OOT | 41.51 453
RF 463 9352 91.18 77.77 81.99 7842 38.64 1437 257 41.56 | 53.68 0.81
XGBoost 556 9449  91.88  84.00 82.64 7693 4005 1624 275 16.60 | 5495 0.73
XGBOD 827 9570 92,15 79.46 8232 7486 40.65 16.08 1.95 OOT | 54.61 1.62
GCN 463 9464 4565 20.88 7822 2537 4057 1406 380 76.35 | 36.42 1.54
SGC 6.04  98.58 42,69 19.87 68.68 17.82 39.59 10.53  2.49 1628 | 34.03 6.48
GIN 6.41 91.67 84.61 33.63 7835 2621 4036 13.68  3.47 60.79 | 42.04 2.57
GraphSAGE | 5.56 04.02 8245 46.64 8471 57.82 5141 1750  3.77 75.32 | 4932 10.44
GAT 7.20 9291  87.94 4362 8272 27.53 4525 1551 3.85 32.07 | 45.17  2.80
GT 7.68  89.85 8490 4460 83.14 2590 4571 17.08  3.83 36.14 | 4474  5.42
KNNGCN 444  96.13 77.25 2946 81.86 29.38 41.88 16.54  3.76 4736 | 4230 [ 4.50 )
GAS 443  96.76 8143 3511 8595 29.80 47.21 1548  3.65 62.36 | 44.42 | 6.62
DCI 774 9177 85.17 39.88 63.68 2739 3773 1459 331 1297 | 41.25 | 1.01
PCGNN 7.73  89.07 89.33 4451 8331 4266 4485 1559 342 80.29 | 46.72 | 4.69
BernNet 7.82 0238  84.80 51.92 89.17 3825 43.69 17.25 327 44.30 | 47.63 | 2.90
AMNet 7.87 9499 88.36 46.86 88.87 25.18 40.74 15.63 2.8l 37.70 | 45.70 | 2.49
GAT-sep Q3 ¢ 84.72 4549 84.01 2635 4666 1790 384 3339 | 45.50 | 2.98
BWGNN 832 0401) 9148 6153 8938 2931 4958( 18.57  3.97 78.93 || 49.57 | 2.12
GHRN 4.66 9527 | 89.52 5542 87.60 43.90 47.45| 18.31 3.80 86.78 || 49.55 \_1.77 )
RF-Graph 513 9695 | 90.53 8392 89.23 7886 5234| 1444  2.15 97.63 || 57.06  1.21
XGB-Graph | 529 97.06 | 9333 9LI1 9012 77.78 53.92| 18.19  3.79 97.34 || 58.95 1.34

N ee——— 7




Primary Results on Heterogeneous &
Transductive Settings

Amazon (Semi-Supervised)

Amazon (Fully-Supervised)

Yelp (Semi-Supervised)

Yelp (Fully-Supervised)

Model AUROC AUPRC Rec@K | AUROC AUPRC Rec@K | AUROC AUPRC Rec@K | AUROC AUPRC Rec@K
GAT 92.44 81.57 77.07 96.66 86.67 83.10 65.56 25.03 28.08 79.50 43.41 43.65
BWGNN 91.83 81.68 77.71 97.95 89.09 85.00 64.30 23.66 26.44 84.89 55.06 52.18
RGCN 84.17 41.07 45.57 92.03 67.97 65.49 72.20 26.46 28.54 78.34 34.57 34.98
HGT 79.75 38.13 45.07 89.64 71.46 70.22 72.83 28.49 31.59 89.62 62.63 57.75
CARE-GNN | 86.00 58.95 59.12 90.84 72.64 67.72 91.19 68.69 65.35 95.23 81.06 74.85
H2Detector 71.00 29.27 32.61 78.66 39.95 44.35 67.28 2223 24.08 89.07 59.40 57.54
XGB-Graph | 94.68 84.38 78.17 98.69 92.61 85.87 | 064.03 24.84 26.81 96.22 87.03 78.76
Elliptic (Inductive) Elliptic (Transductive) DGraph-Fin (Inductive) DGraph-Fin (Transductive)
Model AUROC AUPRC Rec@K | AUROC AUPRC Rec@K | AUROC AUPRC Rec@K | AUROC AUPRC Rec@K
GCN 75.79 14.97 16.73 92.40 73.87 69.99 73.99 3.35 5.61 75.85 3.99 7.05
GraphSAGE | 7951 19.64 20.59 82.85 34.76 45.95 72.66 3.06 543 75.63 3.76 6.97
BWGNN 82.29 22.49 28.26 96.12 86.58 81.14 73.85 3.24 5.83 76.26 4.01 7.52
GHRN 84.74 25.42 28.54 96.05 86.57 81.11 76.20 4.03 7.48 76.14 3.99 7.54
XGB-Graph | 90.36 76.20 70.64 | 96.80 89.58 84.59 | 71.23 2.81 533 | 74.64 3.66 6.75




Impact of different number of neighbor aggregation layers
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Figure 2: The impact of different number of neigh-

bor aggregation layers on the performance of XGB-
Graph and RF-Graph.



Why Do Tree Ensembles with Neighbor Aggregation
Outperform GNNs?

Anomaly instances tend to form multiple clusters and are coupled with normal instances:

« It matches the inductive bias of tree ensembles that favor complex and disjoint decision boundaries.

* GNNs, which typically employ an MLP as the final layer, tend to generate simple and continuous
decision boundaries.

_ GIN (Amazon RF-Graph (Amazon BWGNN (Weibo

Nt .

XGB-Graph (Weibo

Figure 3: Decision boundaries comparison of different approaches. Blue points represent anomalies
while red points are normal nodes. Similarly, the blue/red regions correspond to model predictions
for anomalous/normal classes.



When Do Tree Ensembles with Neighbor Aggregation
Outperform GNNs?

Out of the 10 datasets in GADBench, 3 datasets purely use text embeddings as node features, while
in the remaining 7 datasets, node features contain miscellaneous information such as the combination
of numerical, categorical, and temporal features.

« For datasets that rely on text-based features—namely Reddit, Weibo, and Questions—GNNSs
showcase competitive performance in comparison to tree ensembles.

« Conversely, in the other 7 datasets with diverse feature types that have low correlation (e.g.,
gender and age), tree ensembles with neighbor aggregation typically exhibit superior performance.



Conclusion

« We introduce GADBench, the first comprehensive benchmark for semi- and fully-supervised
anomalous node detection on static attributed graphs.

» Our evaluation of 29 models on 10 real-world datasets shows that tree ensembles with simple
neighborhood aggregation generally outperform other models, including GNNs specifically designed
for the GAD task.

« The rationale behind this finding is initially examined from the standpoints of decision boundary
and node feature type.

« By making GADBench open-source, we aim to foster further research and refinement of GAD
algorithms, as well as their more informed evaluations and comparisons.



Future Direction: GAD Model Design

* Tree ensembles with neighbor aggregation is just an initial attempt to integrate graph
information:

» explore more sophisticated ways to combine GNNs and tree ensembles
* e.g., through end-to-end training strategies.

 How to enhance ensemble trees in the unsupervised GAD scenario?
* e.g., combine neighborhood aggregation with isolation forest.



Future Direction: GAD System Design

« Automated Algorithm Selection [1,2] < System-Level Optimization [3,4]

node features [N NN
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(b) Generate graph partitions with HALO vertices (the vertices with
different colors from majority of the vertices in the partition).

Fig. 4: Graph partitioning with METIS in DistDGL.

[1] AutoGluon: AutoML for Image, Text, Time Series, and Tabular Data

[2] ADGym: Design Choices for Deep Anomaly Detection

[3] DistDGL.: Distributed Graph Neural Network Training for Billion-Scale Graphs
[4] GPU-accelerated Outlier Detection via Tensor Operations



Thank you for listening!

Q&A

WeChat: sgrt3tjh
Email: sgrt3tjh@gmail.com
Github: https://github.com/squareRoot3/GADBench
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