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Motivations

Accurately modeling the fitness landscape of protein
sequences is critical to:

Mutation effects prediction

e The large majority of human variants’
have no known interpretation

<2% clinical
interpretation

.

6.3M
missense

e Example: EVE?, protein-specific
alignment-based generative models for
mutation effects prediction

Challenges

Protein design

e Generating novel yet fit sequences,
conditioning on:

o Labels®
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o  Structure (Inverse folding)*®
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A wide range of protein models for
fitness prediction and design have
emerged in recent years (eg.,
alignment-based models, protein
language models, inverse folding)

Prior protein benchmarks®’ have
been critical to support initial
assessments, but are limited to a
handful of proteins, and there is
significant performance variation
observed across assays®

Robust analysis to drive the
development of the next generation
of models requires scale

1. Landrum & Kattman. ClinVar at five years: Delivering on the promise.
4. Ingraham et al. Generative Models for Graph-Based Protein Design.

7. Dallago et al. FLIP: Benchmark tasks in fitness landscape inference for proteins

2. Frazer et al. Disease variant prediction with deep generative models of evolutionary data

5. Hsu et al. Learning inverse folding from millions of predicted structures. 2022

3. Madani et al. ProGen: Language Modeling for Protein Generation.
6. Rao et al., Evaluating Protein Transfer Learning with TAPE

8. Riesselman et al., Deep generative models of genetic variation capture the effects of mutations




Overview of the ProteinGym benchmarks
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€@ Two types of datasets to serve as ground truth in ProteinGym

Deep mutational scanning (DMS)

Clinical datasets

assays
e Large number of labels (2.8M) for a e Sparse collection of labels (60k+)
limited number of proteins (200+) for a large number of proteins (3k+)
e Labels are experimentally e Labels are based on manual
determined annotation from clinical experts
Dataset Description Mutation type # Proteins # Mutants
DMS High-throughput assays evaluating the functional = Substitutions 217 2.5M
impact of a wide range of protein mutations Indels 66 0.3M
Clinical Expert-curated clinical annotations across a wide  Substitutions 2525 63k
range of human genes Indels 1,555 3k
Total 3,422 2.8M




We implemented / compiled scores for 70+ baselines across two different
model training regimes

70+ Baselines 2 core training regimes

Alignment-based (e.g., DCA, EVE)
Protein language models (e.g.,
ESM, RITA, Progen)

e Hybrid models (e.g.,
Tranception/TranceptEVE)

e Inverse folding (e.g.,
ProteinMPNN, ESM-IF1)

e Clinical effect predictors (e.g.,
PolyPhen-2, REVEL)

e Zero-shot: labels are only used
for evaluation

e Supervised: labels used for
training & evaluation — We
created various cross validation
schemes to assess ability to
extrapolate across positions




We report 5 performance metrics to assess the ability of the various baselines
to support fithess prediction of design initiatives

Example: DMS zero-shot substitution benchmark

Fitness-focused metrics
Model type  Model name Spearman AUC MCC NDCG Recall
Alignment-  Site independent 0.35 0.692  0.278 0.731 0.195
Spearman, AUC & MCC based WaveNet 0212 0624 0172 0676  0.155
models EVmutation 0.39 0.715  0.301 0.762 0.217
DeepSequence (ens.) 0.403 0.723  0.316 0.758 0.219
ASSGSS Overa” performance Of EVE (ens.) 0.431 0.738  0.334 0.768 0.226
: GEMME 0.445 0.745  0.341 0.764 0.208
the model to classify / rank order
y / Protein UniRep 0.166 0.595 0.131 0.63 0.135
H language ESM-1b 0.381 0.714  0.298 0.731 0.196
a” pOSSI ble m Utants models ESM2 (15B) 0.400 0.723  0.312 0.746 0.206
RITA (ens.) 0.365 0.705  0.286 0.735 0.198
ESM-1v (ens.) 0.366 0.720  0.309 0.734 0.207
ProGen2 (ens.) 0.385 0.716  0.302 0.747 0.202
A A VESPA 0.437 0.746  0.345 0.764 0.202
DeSIQ n -focused metrlcs CARP (640M) 0.353 0.696  0.273 0.727 0.194
Inverse ProteinMPNN 0.244 0.634 0.184 0.698 0.182
N D C G & R ” Folding ESM-IF1 0.405 0.722 0315 0.728 0.216
eca MIF-ST 0389 0712 0298 0750 0219
H HH Hybrid UniRep (evotuned) 0.324 0.700  0.257 0.720 0.176
Quantlfy the abl I Ity Of the mOdel models MSA Transformer (ens.) 0.427 0.745  0.333 0.766 0.223
c - Tranception L 0.421 0.753  0.329 0.764 0.216
to properly identify the top TranceptEVE 0445 0767 0346 0772 0227
mutants fO r 'th e ph enotype Of Table 2: ProteinGym - Zero-shot substitution DMS benchmark Average Spearman’s rank cor-
relation, AUC, MCC, NDCG@10%, and top 10% recall between model scores and experimental
|ntere St measurements on the ProteinGym substitution benchmark. We use ‘ens.’ as a shorthand for ensemble.




Several deep dives allow us to assess the relative benefits of various
architectures in different settings

MSA depth Example: DMS zero-shot substitution performance by MSA depth
Model type Model name Spearman by MSA depth (1)
H! .l 18I Low Medium High All
High Medium Alignment- Site-Independent 0.405 0.376 0.353 0.350
based WaveNet 0.276 0.372 0.489 0.212
models EVmutation 0.386 0.403 0.487 0.390
Taxa DeepSequence (ensemble) 0.364 0.407 0.535 0.403
EVE (ensemble) 0.408 0.44 0.532 0.431
Q@ j , o< ‘( GEMME 0.418 0.45 0.508 0.445
OO [‘ ff ‘ﬂ ! ‘ Protein UniRep 0.167 0.153 0.178 0.166
Viruses Hqu:ans Other Eukaryotes Prokaryotes language ESM-1b 0.352 0.326 0.493 0.381
models ESM2 (15B) 0.370 0.376 0.440 0.400
RITA (ensemble) 0.330 0.412 0.410 0.365
= ESM-1v (ensemble) 0.370 0.381 0.533 0.394
Mutational depth ProGen2 (ensemble) 0363 0419 0463  0.385
VESPA 0.425 0.431 0.548 0.437
Hybrid UniRep evotuned 0.300 0.360 0.387 0.324
Singles Triples Five+ models MSA Transformer (ensemble) 0.377 0.432 0.514 0.427
Tranception L 0.416 0.433 0.504 0.421
TranceptEVE 0.432 0.461 0.543 0.445
Fu nctlon ty pe Table AS: ProteinGym - Zero-shot substitution DMS benchmark by MSA depth Average
Spearman’s rank correlation between model scores and experimental measurements by MSA depth
— @ on the ProteinGym substitution benchmark. Alignment depth is measured by the ratio of the effective
= @ number of sequences N, in the MSA, following Hopf et al. [2017], by the length covered L (Low:
Activity Binding  Stability Expression Neg/L <1; Medium: 1< Neg/L <100; High: Neg/L >100)




A few insights that emerged from our analyses

For mutation effect prediction, SOTA
performance still necessitates the use of
alignments

While they do not perform very well in
aggregate, inverse folding models achieve the
best performance on stability assays

The best zero-shot fithess models rival their
supervised counterparts on the clinical
benchmarks

All protein language models of single-sequence input
are currently relatively far from SOTA

The best performance is achieved by hybrid models
(Tranception, TranceptEVE) or alignment-based models
(GEMME, EVE, VESPA)

Certain modeling biases are best adapted to predicting
specific properties

For a deeper analysis on this, you may want to check our
workshop paper “Combining Structure and Sequence

for Superior Fitness Prediction” to be presented at the
MLSB and GenBio workshops

The best zero-shot baselines (eg., TranceptEVE, EVE)
perform on par with the best supervised baselines on the
clinical benchmarks, without being subject to the same
label biases




Resources to get started with ProteinGym

GitHub repo Website
github.com/OATML-Markslab/ProteinGym www.proteingym.org/home
e Models: all code for running zero-shot and e Performance summaries: DMS Vs clinical
supervised baselines benchmarks; for zero-shot vs supervised; for

substitutions vs indels
e Metrics: all code to compute performance

metrics and the various deep dives e Performance deep dives: DMS level, by
segmentation variable (eg., MSA depth, taxa,
e Data: DMS assays (raw & processed files), function grouping)
model scores for all 2.8M mutants, Multiple
Sequence Alignments, predicted 3D structures, e Quick links to resources (paper & GitHub)

processed ClinVar & gnomAD datasets



https://github.com/OATML-Markslab/ProteinGym
https://www.proteingym.org/home

See you at NeurlPS!
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Thanks to the broader ProteinGym team...
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