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Motivation

@ The multi-armed bandit (MAB) problem and its various extensions
have been extensively investigated.

» [Bubeck and Cesa-Bianchi, 2012], [Russo et al., 2018],
[Slivkins et al., 2019], [Lattimore and Szepesvari, 2020], ...
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Motivation

@ Most work typically focus on achieving optimal expected regret.

@ Well-known common goals:

» worst-case expected regret O(v/T)

> instance-dependent expected regret O(1)
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Motivation

@ Most work typically focus on achieving optimal expected regret.

@ Well-known common goals:

» worst-case expected regret O(v/T)

> instance-dependent expected regret O(1)

@ What if we are willing to give up a little bit on regret expectation ...

> regret tail P(regret > x) decays faster for large x?
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Motivation: Main Question

: Light-tailed Risk |
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What is the (optimal) trade-off between
expectation E[regret] and tail risk P(regret > x)?
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Motivation: Literature

@ Not much work on understanding the regret distribution of stochastic
bandit policies.

> [Audibert et al., 2009], [Salomon and Audibert, 2011]: standard bandit
algorithms generally have undesirable concentration properties around
the instance-dependent mean O(In T).

» [Ashutosh et al., 2021]: a policy with an O(In T) regret can be fragile
to mis-specified risk parameter (e.g., the parameter for subgaussian
noises).

» [Fan and Glynn, 2022]: for optimized UCB policies, the probability of
incurring a linear regret is very heavy-tailed: at least Q(1/T).
Meanwhile, heavy-tailed risk exists for more general UCB policies.
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Model

o Time horizon T; Number of arms K; Mean reward 6 € [0, 1]¥.

@ In each time t € [T], a policy 7 pulls an arm a; € [K] and collects a
reward r¢ a, = 0,5, + €t 3.

> € is an independent zero-mean o-subgaussian noise term.

o Fixed-time, known T:

7-‘-1.'(7—) . {31, Miapy 5 dt—1, rt—l,atfl} U {T} — at.

@ Pseudo Regret

.
RE(T)=0.-T—> 0,. (0= max )

t=1
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Model: Core Concepts

1. Regret Expectation. Fix o € [1/2,1) and § € [0,1). We differentiate
between two scenarios: worst-case and instance-dependent.
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Model: Core Concepts

1. Regret Expectation. Fix o € [1/2,1) and § € [0,1). We differentiate
between two scenarios: worst-case and instance-dependent.

(a) A fixed-time policy 7 is said to be worst-case a-optimal or simply,
a-optimal, if for any ¢ > 0, we have

sup E [R (7)) = o( T**).

a = 1/2: worst-case optimality
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1. Regret Expectation. Fix o € [1/2,1) and 5 € [0,1). We differentiate
between two scenarios: worst-case and instance-dependent.

(a) A fixed-time policy 7 is said to be worst-case a-optimal or simply,
a-optimal, if for any ¢ > 0, we have

sup E [R (7)) = o( T**).

a = 1/2: worst-case optimality

(b) A fixed-time policy 7 is said to be instance-dependent [3-consistent or
simply, 8-consistent, if for any underlying true mean vector 8 and
any € > 0, we have

E[RF(T)] = o(T7*).

8 = 0: instance-dependent consistency
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Model: Core Concepts

2. Regret Tail Risk. We differentiate between two scenarios: worst-case
and instance-dependent.
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Model: Core Concepts

2. Regret Tail Risk. We differentiate between two scenarios: worst-case
and instance-dependent.

(a) A fixed-time policy m enjoys worst-case light-tailed risk, if there
exists a constant ¢ € (0,1/2) such that

St;pP(Rér(T) > ¢T) = O(exp(—poly(T))).
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Model: Core Concepts

2. Regret Tail Risk. We differentiate between two scenarios: worst-case
and instance-dependent.

(a) A fixed-time policy m enjoys worst-case light-tailed risk, if there
exists a constant ¢ € (0,1/2) such that

sgpP(Rér(T) > cT) = O(exp(—poly(T))).

(b) A fixed-time policy 7 enjoys instance-dependent light-tailed risk, if
for any underlying true mean vector 6, there exists a constant
c € (0,1/2) such that

P(RG(T) > cT) = O(exp(—poly(T)))-
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Main Results: Optimal Trade-off

o Optimal regret tail risk for the family of policies that obtain both
O(T?) worst-case and O(T?) instance-dependent expected regret
(explicit tail bounds are given in the paper):

— Insupy P(RF(T) > x)
(worst-case scenario)

O((x/T) A TH)
for x = Q(T)

—InP(R;(T) > x)
(instance-dependent scenario)

o(T")
for x = Q(T?)
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Main Results: Optimal Trade-off

o Optimal regret tail risk for the family of policies that obtain both
O(T?) worst-case and O(T?) instance-dependent expected regret
(explicit tail bounds are given in the paper):

—Insupy P(RF(T) > x) O((x/T) A TH)
(worst-case scenario) for x = Q(T)
—InP(RF(T) > x) o(T#)
(instance-dependent scenario) for x = Q(TP)

More sub-optimality and inconsistency leaves space for
more light-tailed regret distribution.
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Main Results: Algorithm Design

@ Successive Elimination with the bonus term

T/K)*VInT T8InT
rad(n) = m% Aoy T
~———

-
control the worst-case tail  control the instance-dependent tail
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Main Results: Algorithm Design

@ Successive Elimination with the bonus term

T/K)*VInT T8InT
rad(n) = m% Aoy T
~———

-
control the worst-case tail  control the instance-dependent tail

@ Special hyperparameters

P?’]l:ﬂzo

InT
A(n) = moy/ -
rad(n) = p

> 1 = +oo,a=1/2
TInT
rad(n) = ———
() =m="7%
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Extensions: Structured Non-stationarity

@ We also extend our results to models that allow structured
non-stationarity beyond standard stochastic MAB problems:

» a common reward baseline among all arms for each time period
[Greenewald et al., 2017, Krishnamurthy et al., 2018,
Kim and Paik, 2019, Simchi-Levi and Wang, 2022]

It,a, = bt + Hat + €t,a;-

We show that a simple modification to our policy design leads to
optimal trade-off similar to those for the stochastic MAB model.
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Concluding Remarks

@ Optimal trade-off and explicit regret tail bounds for K-armed bandit

@ Extensions on structured non-stationarity
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Concluding Remarks

@ Optimal trade-off and explicit regret tail bounds for K-armed bandit
@ Extensions on structured non-stationarity

@ Unknown T7? Heavy-tailed rewards? Thompson sampling?
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Thank Youl

A follow-up extended version
https://arxiv.org/abs/2304.04341

Contact: fengzhu©@mit.edu
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