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On the Trade-off of Intra-/Inter-class Diversity
for Supervised Pre-training

Jieyu Zhang*, Bohan Wang*, Zhengyu Hu,
Pang Wei Koh, Alexander Ratner



Diversities in Supervised Pre-training

Two kind of diversity for a supervised pre-training dataset

.@ Intra-class diversity:
Rl Number of different samples within each pre-
. training class.
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.. ) Inter-class diversity:

Number of different pre-training classes.

Trade-off Between Diversities
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With a fixed Dataset budget(size) Intra-class diversity VS Inter-class diversity



Empirical Observations on Intra-/Inter-Class Diversity
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Both intra-/inter-class diversity are
beneficial for downstream tasks.
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A trade-off of intra-/inter-class
diversity on downstream task
performance.

log(n)

o = N W A~ U o

log(K) log(K)

(e) Stanford40 (f) StanfordDogs



Theoretical Understanding:

Impact of Intra-/Inter-Class Diversity Trade-of f

Theorem 3.1. Ler Assumptions|I\and|2 hold. Then, with probability over the sampling of the datasets
at least 1 — 6§, we have
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A simplified
C D version
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Theoretical Understanding:

Optimal Class-to-Sample Ratio

When N is fixed, by leveraging the fact that N = n x K, we can
express U as

2
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Predicting the optimal number of pre-training classes

o .
2§ 7 Extrapolation:
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Small dataset Optimal class-to-sample The number of Large dataset
ratio classes

T:Zl Standard:
" The number of classes equals 1000 as the standard design choice
of ImageNet
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The number of classes K Extrapolation finds are all superior to the
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Thank you for your listening!



