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Introduction

 We develop a pre-training method for 3D molecular conformations.

« Common pre-training strategy: self-supervised de-noising, such as Pre-
training-via-Denoising (Zaidi et al., 2022) and UniMol (Zhou et al., 2022).

« De-noising can be thought of an approximation to learning atomic forces.
Forces are defined as:
F = -V,E(x), x: atomic positions, E: potential energy.

 However, this assumption would only be true for equilibrium data, i.e. 3D
molecular conformations at zero potential energy.

— Alarge amount of non-equilibrium data during simulations and
optimizations do not fit this description;

— The approximation is not necessarily accurate and lacks physical
iInformation.

« Furthermore, existing machine learning for molecules predominantly
focus on extensive training on a single domain, limiting practical
usability and encouraging overfitting.

« Extension of pre-training to more available data, both equilibrium and off-

equilibrium, is largely unexplored.

« We incorporate both equilibrium and off-equilibrium data in a
unified representation learner by a force-centric training paradigm.

Our Contributions

Introduced a novel force-centric pretraining paradigm for molecular
conformations, unifying equilibrium and off-equilibrium data.

Developed a model that enhances molecular dynamics (MD) simulations,
achieving high accuracy and efficient simulation.

Provided a diverse set of DFT simulation data for polymers, aiding in the
study of polymer properties and molecular forces modeling.
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« Assume: Equivariant Transformer ®, coordinates r, € R™atoms*3,

* Non-equilibrium —— High energy —— DFT Forces
* Equilibrium —— Low energy —— Zero Forces
« Perturbed equilibrium —— High energy =——> Approximate Forces

« Why?

— Pre-train the model with the physics-informed interatomic relations by forces;
— Unify the training objective for all data with one physical principle;
— De-noising objective helps explore the potential energy surface.

Experiment Results

« ET-OREO consistently outperforms baseline models in terms of force accuracy,
molecular dynamics simulation accuracy, and simulation robustness.

Molecule Metric DimeNet GemNet-T GemNet-dT NequlP TorchMDNet ET-ORO ET-OREO
Aspirin Force (]) 10.0 3.3 5.1 2.3 7.4 4.2 1.0
Stability () 54(12} 72(50) 192(132) 300(0) 102(45) 94(42} 300(0)
h(r) (1) 0.04000) 0.040002)  0.04(0.01) 0.02(0.00y | 0-04(0.00) 0.04(0.00) 0.029,00)
Ethanol Force 4.2 2.1 1.7 1.3 5.6 3.1 1.0
Stability 26(10) | 69(93) 300(0) 300(0) 121 (34) 300(0) 300{0)
h(f‘) 0.15(0_03) 0. 10(0_02) 0.09((}_00) 0.08(0_00) 0.12(0_01) 010(0(}0) 003(00{))
Naphthalene Force 5.7 1.5 1.9 1.1 3.3 2.0 0.9
Stability 85(68) 8(2) 25( 10) 300(0) 50(20) 25(9) 300(0)
h(r) 0.100.01) 0.130.00)  0.12¢.01) 0.12(0.01) | 0-120.00) 0.11(0.00) 0.03(0.00)
Salicylic Acid  Force 9.6 4.0 4.0 1.6 4.7 2.5 0.9
Stability 73(82) 26(24) 94( 109) 300(0) 60(69) 94(58) 300(0)
h(r) 0.06((}_(}2) 0. 08(0_04) 0.07(0_03) 0.03 (0.00) 0.06(0_02) 0.05({}_01) 0.02(0_00)0

Table 2: Simulation results on MD17. For all results, force MAE is reported in the unit of [meV/A],
and stability is reported in the unit of [ps]. The distribution of interatomic distances /(r) MAE is
unitless. FPS stands for frames per second. For all metrics (] ) indicates the lower the better, and (1)
indicates the higher the better. The first group of methods is taken from [8]. The second group of
methods is our new baselines, including TorchMDNet [8], ET-ORO, and ET-OREQO. These models
share the same architecture and have the same FPS.

« ET-OREO maintains high force accuracy in molecular dynamics simulations.
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(a) Forces correlation of ET-OREO to DFT forces during simulations.

Dataset # Conformations
PCQM4Mv?2 3,378,606
ANI1x 4,956,005
MD17 3,611,115
poly24 3,851,540
Total 15,718,279
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Table 1: Datasets used in our model pre-training process.

Nice properties of atomic forces:

— They are physically well-defined observable, i.e., the force acting on an atom is
determined solely and uniquely from its local environment, defined as the real-
space distribution of its neighboring atoms;

— They are generalizable across various molecules in the sense that atoms from
different molecules that have the same local environment should experience the
same atomic forces;

— They can unify equilibrium and off-equilibrium data, characterizing the whole
landscape of the potential energy surface;

— Empirically, forces across different datasets calculated different ab initio
methods have relatively similar distributions, among other chemical properties.
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(a) Interatomic distance distribution during simulations.
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(b) Potential energy curve during simulations.
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ET-OREOQO improves property prediction on QM9 by ~30%, on par with NoisyNodes.

TorchMDNet
EHOMO 20.3
ELUMO 17.5
A€ 36.1

NoisyNode
15.6
13.2
24.5

Table 4: Fine-tuning on HOMO-LUMO properties on
QM9. Metrics are MAE 1in meV.

ET-OREO
16.8
14.5
26.4

Off-equilibrium data
helps more with
simulation and
optimization than
property prediction.
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