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Addressing the speed-accuracy simulation trade-off for adaptive 
spiking neurons



Overview: spiking neural networks

Build biologically plausible 
models of the brain

Fit neural data and gain 
insights

Applications in energy efficient 
machine learning



Problem: slow training and simulation times

Spiking model: LIF and ALIF (continuous-time models)
Problem: slow simulation/training due to sequential and 
autoregressive nature 
Our goal: to accelerate the inference and training of spiking LIF 
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Idea: LIF/ALIF dynamics can be computed in constant time over 
some simulation length when at most a single spike is emitted (i.e. 
over sim length 𝑇! = absolute refractory period length).

Contribution: algorithmically reframed the LIF/ALIF to simulate in 
blocks of times, instead of individual time steps.

Solution: simulate dynamics in blocks of time
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Experiments: verifying training speedup
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Training speedup scales close to linear with respect to the ARP length 
(over different simulation times, batch sizes and number of layers).

Theoretical speedup: longer ARP -> Faster simulation



Experiments: ML benchmarks
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Similar accuracy to the standard method on ML benchmarks, but in a fraction of the training time!



Experiments: fitting neural recordings

Can fit electrophysiological recordings a lot quicker (without sacrificing accuracy)!

DT=0.1ms ARP=2ms


