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ii PROCESSING SYSTEMS Problem: slow training and simulation times
Expected
Spiking model: LIF and ALIF (continuous-time models) E N 0
Problem: slow simulation/training due to sequential and 2 slow
autoregressive nature éu 100
Our goal: to accelerate the inference and training of spiking LIF i -
and ALIF neurons without sacrificing simulation accuracy. to=t 107 1o’
DT (ms)
Current training times Training times we want
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Solution: simulate dynamics in blocks of time

Idea: LIF/ALIF dynamics can be computed in constant time over
some simulation length when at most a single spike is emitted (i.e.

over sim length T = absolute refractory period length).
>

Contribution: algorithmically reframed the LIF/ALIF to simulate in

/ ARP / ARP /

blocks of times, instead of individual time steps.

Current simulation method
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Experiments: verifying training speedup

Theoretical speedup: longer ARP -> Faster simulation

Method  Computational Complexity = Sequential Operations
Standard O(N™ . N°ut. T) o(T)
Blocks O(N™.N°t.T2.N) O(T/TR)

Training speedup scales close to linear with respect to the ARP length
(over different simulation times, batch sizes and number of layers).
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Experiments: ML benchmarks

Similar accuracy to the standard method on ML benchmarks, but in a fraction of the training time!
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Can fit electrophysiological recordings a lot quicker (without sacrificing accuracy)!
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