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Background:
Domain Generalization

= Goal: Perform well on the unseen domain
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Domain 3 Testing on unseen target domain
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Source domains

> The target domain is unknown during training.
= The model should have generalization capability on the unseen domain.

—> Solved via meta-learning, data augmentation, style augmentation ..



Background:
Federated Domain Generalization

* |nreal-world FL scenarios, clients have different domains and the trained
global model should predict well on any unseen domains.

—> Raising an important problem: federated domain generalization.
Global model

@ Testing phase

Unseen target domain

26D 0D LD

| “‘ ’é F‘_,I'

ocal update

Source domain 1 Source domain 2 Source domain 3

= However, federated domain generalization is challenging due to:
- Limited data/domain in each user.



Background:
Domain Generalization via Feature Augmentation

» Key observations: feature statistics of CNN layers capture domain information
» Define x as the encoded feature of a specific sample at an early layer.
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Background:
Domain Generalization via Feature Augmentation

= AdalN [ICCV’17]

art_painting
cartoon
photo
sketch

—> Based on this observation, AdaIN proposed a new style transfer method.

Content information of x is preserved

Transfer to the style of y



Contribution:

Overview of Approach

= Two key components to tackle federated DG

1. Style-based learning

Style exploration

New styles
(from another client) _--

/ Style sharing and shifting
/Original styles
(in the client)

Selective style shift
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2. Attention-based learning

Key sample i Style shifting and

(Class: alarm clock) exploratlon (Sec. 3.1)
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1) Style-based learning: Improving domain diversity (to tackle the lack of domains

in each client).

2) Attention-based learning: Extracting common/important feature information
within each class and emphasize them (to tackle the lack of data in each client).



Proposed Method:
Style-Based Learning

= Step 1: Style information sharing

—> Share the statistic information of each client’s style

Style sharing and shifting

ﬁ)riginal styles
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@ : Original styles
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Proposed Method:
Style-Based Learning

= Step 2: Selective style shifting

- Choose B/2 cluster centers via k-means++

Style sharing and shifting
Original styles New styles
(in the client) (from another client)

Style variance
A En @) or Z,(0))

A Style center
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;% Samples selected via k-means++
A Samples shifted to new styles




Proposed Method:
Style-Based Learning

= Step 2: Selective style shifting

—> Shift the remaining B/2 samples (not cluster centers) to the new style

Style sharing and shifting

Original styles New styles.
(in the client) .................................................. (from another cllent)
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Style center
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Proposed Method:
Style-Based Learning

= Step 3 &4: Feature-level oversampling & Style exploration
1) Perform feature-level oversampling
2) Extend the styles of oversampled features according to the below equations

pnew (87) = p(87) + - (u(57) — pn (™)),

Onew(81) = 0(80) + a - (0 (57) — op(s™)), a: exploration level

Style exploration
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Proposed Method:
Style-Based Learning

= Advantage of style-based learning

—> Each client can expose the model to diverse styles, handling the issue of
the lack of styles in each FL client.

Style exploration
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Motivation:
Attention-Based Learning

* |ndata-poor FL, each client has a limited number of data samples.

= |n practice, each real-world image usually includes background noises.
» E.g.,imagesin Office-Home dataset

¢

Ground-truth class

—> Leading to overfitting to small local datasets
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Motivation:
Attention-Based Learning

= Training: Apply both cross/self-attention to capture the common
information between images from the same class.

0,X; +0,X,\"
2 ) (gkX?-)J

 Similarity function: Simmix(Xi,Xj)=(
= |nference
 Similarity function: Sim(X;, X;)

Key sample i Style shifting and
(Class: alarm clock) exploration (Sec. 3.1)
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Motivation:
Attention-Based Learning

= Advantage of attention-based learning

—> Focus on more important features while the effect of unimportant factors
such as backgrounds is effectively reduced, improving the performance.

Key sample i Style shifting and
(Class: alarm clock) exploration (Sec. 3.1)
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Experimental Results

= Achievable accuracy of different schemes

I PACS VLCS

Methods || At Cartoon  Photo  Sketch | Avg. || Caltech LabelMe Pascal  Sun | Avg.
FedAvg [26] 73.67 70.87 90.27 55.70 72.63 93.75 59.30 70.05 69.90 73.25
FedBN [22] 78.42 70.9 90.96 54.07 73.59 94.81 58.59 72.06 70.36 73.96

MixStyle [39] 79.10 76.30 90.10 60.63 76.53 95.20 60.40 72.10 69.93 74.41
DSU [21] 80.43 75.70 92.60 69.87 79.65 96.13 58.77 71.80 71.87 74.64
CCST [2] 71.35 72.40 88.65 64.10 74.13 92.50 61.20 68.20 66.50 72.10
FedDG [25] 71.20 71.40 90.70 59.20 73.13 95.3 57.5 72.8 69.8 73.85
FedSR [28] 76.40 71.25 93.25 60.55 75.36 92.10 60.50 70.75 71.65 | 73.75
StableFDG (ours) 84.10 78.57 95.40 72.73 82.70 98.13 59.20 73.60 70.27 | 75.30

(a) PACS and VLCS datasets.
| Office-Home Digits-DG

Methods || Art Clipart Product Real | Avg. || MNIST MNISTM SVHN SYN | Avg
FedAvg [26] 57.27 48.23 72.77 74.60 | 63.22 98.05 70.95 68.95 86.40 | 81.09
FedBN [22] 57.56 48.13 72.65 74.57 63.23 97.33 72.68 71.77 85.36 81.79
MixStyle [39] 56.05 51.55 70.95 73.25 62.95 97.75 74.25 70.85 85.50 | 82.09
DSU [21] 58.55 52.60 71.60 73.15 63.98 98.10 75.60 70.47 85.80 | 8249
CCST [2] 51.3 51.75 70.2 70.3 60.89 95.10 62.80 56.60 7490 | 72.35
FedDG [25] 57.6 48.1 72.55 74.33 63.15 97.97 72.13 71.03 87.87 | 82.25
FedSR [28] 57.8 48.1 72.1 74.2 63.05 98.00 73.00 68.50 86.70 | 81.55
StableFDG (ours) 57.57 54.30 72.33 7497 | 64.79 97.23 74.53 72.95 85.85 | 82.64

(b) Office-Home and Digits-DG datasets.



Experimental Results

= Ablation studies
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= Visualization of attention score maps




Conclusion

= We proposed StableFDG, a new training strategy tailored to this unexplored
area.

= Qur style-based strategy enables the model to get exposed to various novel
styles beyond each client’s source domains.

= Qur attention-based method captures and emphasizes the important /
common characteristics of each class.

= We believe that our solution provides an interesting direction for DG and
FedDG community in practice.
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Thank you

Any questions?

Contact:

Jungwuk Park

Email: savertm@kaist.ac.kr
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