Federated Multi-Objective Learning

Haibo Yang¹, Zhuqing Liu², Jia Liu², Chaosheng Dong³, Michinari Momma³ ¹Rochester Institute of Technology, ²The Ohio State University, ³Amazon

Overview

In this work, we propose a new federated multi-objective learning (FMOL) framework with multiple clients distributively and collaboratively solving an MOO problem while keeping their training data private.

- * Our FMOL framework allows a different set of objective functions across different clients to support a wide range of applications, which advances and generalizes the MOO formulation to the federated learning paradigm.
- For this FMOL framework, we propose two new federated multi-objective optimization (FMOO) algorithms called federated multi-gradient descent averaging (FMGDA) and federated stochastic multi-gradient descent averaging (FSMGDA)
- Both algorithms allow local updates to significantly reduce communication costs, while achieving the same convergence rates as those of their algorithmic counterparts in centralized learning.

Problem Formulation

For a system with M clients and S tasks (objectives) in total, our FMOL framework can be written as follows:

$$\begin{split} \min_{\mathbf{x}} \quad \mathrm{Diag}(\mathbf{F}\mathbf{A}^{\top}), \\ \mathbf{F} &\triangleq \begin{bmatrix} f_{1,1} & \cdots & f_{1,M} \\ \vdots & \ddots & \vdots \\ f_{S,1} & \cdots & f_{S,M} \end{bmatrix}_{S \times M}, \mathbf{A} &\triangleq \begin{bmatrix} a_{1,1} & \cdots & a_{1,M} \\ \vdots & \ddots & \vdots \\ a_{S,1} & \cdots & a_{S,M} \end{bmatrix}_{S \times M}, \end{split}$$

where **F** groups all potential objectives $f_{si}(x)$ for each task s at each client i, and $A \in \{0,1\}^{S \times M}$ is a binary objective indicator matrix, with each element $a_{si} = 1$ if task s is of client i's interest and $a_{si} = 0$ otherwise.

- 1. Each client has only one distinct objective: $A = I_M S = M Diag(FA^T) =$ $[f_1(x), f_2(x), \dots, f_S(x)]$. E.g., multi-task learning, classic federated learning as MOO problem.
- 2. All clients share the same S objectives: A is an all-one matrix. E.g., distributed MOO with decentralized data.
- 3. Each client has a different subset of objectives.

(3)

Algorithm

Algorithm 1 Federated (Stochastic) Multiple Gradient Descent Averaging (FMGDA/FSMGDA). At Each Client i:

1. Synchronize local models $\mathbf{x}_{s,i}^{t,0} = \mathbf{x}_t, \forall s \in S_i$. 2. Local updates: for all $s \in S_i$, for $k = 1, \ldots, K$, (FMGDA): $\mathbf{x}_{s,i}^{t,k} = \mathbf{x}_{s,i}^{t,k-1} - \eta_L \nabla f_{s,i}(\mathbf{x}_{s,i}^{t,k-1})$. (FSMGDA): $\mathbf{x}_{s,i}^{t,k} = \mathbf{x}_{s,i}^{t,k-1} - \eta_L \nabla f_{s,i}(\mathbf{x}_{s,i}^{t,k-1})$. 3. Return accumulated updates to server $\{\Delta_{s,i}^t, s \in S_i\}$: (FMGDA): $\Delta_{s,i}^t = \sum_{k \in [K]} \nabla f_{s,i}(\mathbf{x}_{s,i}^{t,k})$. (FSMGDA): $\Delta_{s,i}^t = \sum_{k \in [K]} \nabla f_{s,i}(\mathbf{x}_{s,i}^{t,k}, \xi_i^{t,k})$ At the Server: 4. Receive accumulated updates 5. Compute $\Delta_s^t = \frac{1}{|R_s|} \sum_{i \in R_s} \Delta_s^t$

$$\min_{\lambda_t \geq 0} \Big\| \sum\nolimits_{s \in [S]} \lambda_s^t \Delta_s^t \Big\|^2, \quad \text{s.t.} \sum\nolimits_{s \in [S]} \lambda_s^t = 1.$$

- 7. Let $\mathbf{d}_t = \sum_{s \in [S]} \lambda_s^{t,*} \Delta_s^t$ and update the global model as: $\mathbf{x}_{t+1} = \mathbf{x}_t \eta_t \mathbf{d}_t$, with a global learning rate η_t .
 - · Local update: communication efficient
 - · Two-sided learning rates: local learning rate controls the derivations and noise, global learning rate manage the learning progress
 - · Convex quadratic optimization for common direction

Convergence Rates

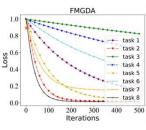
Table 1: Convergence rate results (shaded parts are our results) comparisons.

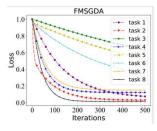
Methods	Strongly Convex		Non-convex	
	Rate	Assumption*	Rate	Assumption*
MGD [7]	$\mathcal{O}(r^T)$ #	Linear search & sequence convergence	$\mathcal{O}(1/T)$	Linear search & sequence convergence
SMGD [8]	O(1/T)	First moment bound & Lipschitz continuity of λ	Not provided	Not provided
FMGDA	$\mathcal{O}(\exp(-\mu T))$ #	Not needed	$\mathcal{O}(1/T)$	Not needed
FSMGDA	$\tilde{\mathcal{O}}(1/T)$	(α, β) -Lipschitz continuous stochastic gradient	$\mathcal{O}(1/\sqrt{T})$	(α, β) -Lipschitz continuous stochastic gradient

[#]Notes on constants: μ is the strong convexity modulus; r is a constant depends on μ , s.t., $r \in (0, 1)$. *Assumption short-hands: "Linear search": learning rate linear search [7]; "Sequence convergence": {x_t} converges to x* [7]; "First moment bound" (Asm. 5.2(b) [8]): $\mathbb{E}[||\nabla f(\mathbf{x},\xi) - \nabla f(\mathbf{x})||] \leq \eta(a + b||\nabla f(\mathbf{x})||)$;"Lipschitz continuity of λ " (Asm. 5.4 [8]): $||\boldsymbol{\lambda}_k - \boldsymbol{\lambda}_t|| \leq 1$ $\beta \left\| \left[(\nabla f_1(\mathbf{x}_k) - \nabla f_1(\mathbf{x}_t))^T, \dots, (\nabla f_S(\mathbf{x}_k) - \nabla f_S(\mathbf{x}_t))^T \right] \right\|; (\alpha, \beta) \text{-Lipschitz continuous stochastic gradi$ ent": see Asm. 4.

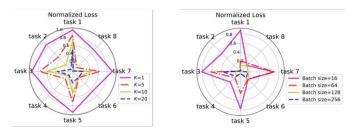
Assumption 4 ((α , β)-Lipschitz Continuous Stochastic Gradient). A function f has (α , β)-Lipschitz continuous stochastic gradients if there exist two constants $\alpha, \beta > 0$ such that, for any two independent training samples ξ and ξ' , $\mathbb{E}[\|\nabla f(\mathbf{x},\xi) - \nabla f(\mathbf{y},\xi')\|^2] \leq \alpha \|\mathbf{x} - \mathbf{y}\|^2 + \beta \sigma^2$.

Numerical Results





Effectiveness of FMOL algorithms: River Flow dataset with 8 tasks.



Ablation study: local steps and batch size

Conclusion

- · Proposed a general Federated Multi-Objective Learning (FMOL) framework...
- · Proposed two federated (stochastic) multi-gradient descent averaging algorithms with theoretical guarantees.

Acknowledgments

This work has been supported in part by NSF grants CAREER CNS-2110259 and CNS-2112471.

$$\begin{aligned} \{\Delta_{s,i}^t, \forall s \in S_i, \forall i \in [M]\}.\\ \Delta_{s,i}^t, \forall s \in [S], \text{ where } R_s = \{i : a_{s,i} = 1, i \in [M]\}. \end{aligned}$$

6. Compute $\lambda_t^* \in [0,1]^S$ by solving

$$\min_{\lambda_t \geq 0} \Big\| \sum\nolimits_{s \in [S]} \lambda_s^t \Delta_s^t \Big\|^2, \quad \text{s.t.} \sum\nolimits_{s \in [S]} \lambda_s^t = 1.$$