SORTING WITH PREDICTIONS

XINGJIAN BAI, CHRISTIAN COESTER

'\‘(‘Op.
S UNIVERSITY OF

& OXFORD

Motivation

Traditional Algorithms Machine Learning Models
Worst-case guarantees Often very powerful
Pessimistic? No guarantee

Real life ## worst case, often predictable
(e.g., solve similar instances repeatedly)

Algorithms with predictions

Goal: Good predictions => much better performance

Bad predictions = same worst-case guarantee

Sorting with Predictions

Task: Sort an array of items, a;,a,, ...,a,, wrt. <

Positional Prediction Setting:

Receive prediction of the ranking of each item

Dirty Comparison Setting:

Access to quick-and-dirty comparisons between each pair of items,
besides slow-and-clean comparisons.

Sorting with Positional Predictions

Input: a,a,, ..., a,

p(i): true ranking of a; in the sorted list
p(i): predicted ranking of a; in the sorted list

Error: 5, = | p(i) — p(i) |

Sorting with Positional Predictions

Input: a,a,, ...,a,

true ranking of g; in the sorted list
prediction p(i) of a's ranking in the sorted list

Error: n, = | p(i) — p(i) |, equals to the absolute difference between
0} = |{j € [n]: p() < PG Ap() > p()} |and

nl = |l € [n]: pG) 2 pG) A p(j) < p()}]

Double-Hoover Sort: O (Z log (min {’7,-19 ’7{} + 2))

=1

Sorting with Dirty Comparisons

Input: a,a,, ...,a,

slow-and-clean comparator <
quick-and-dirty comparator <

Error: n; := #{]: (aj < CZ,-) * (Clj < ai)}

Dirty-Clean Sort: O(nlogn) dirty comparisons
and O < Z’.@_l log(n, 2)) clean comparisons

Dirty-Clean Sort Algorithm

ldea: Build BST wrt. <
Guide insertions via < and <

Phase 1: Dirty Probing

Dirty-Clean Sort Algorithm

ldea: Build BST wrt. <
Guide insertions via < and <

Phase 2: Verification

Dirty-Clean Sort Algorithm

ldea: Build BST wrt. <
Guide insertions via < and <

Phase 2: Verification

Dirty-Clean Sort Algorithm

ldea: Build BST wrt. <
Guide insertions via < and <

Phase 2: Verification

Dirty-Clean Sort Algorithm

ldea: Build BST wrt. <
Guide insertions via < and <

@/ T
Phase 3: Clean Insert

Dirty-Clean Sort Algorithm

ldea: Build BST wrt. <
Guide insertions via < and <

Phase 3: Clean Insert

Double-Hoover Sort Algorithm

ldea: Bucket Sort the items w.r.t. p(i)

Two "Hoovers", L and R, scan through the array repeatedly in
log(n) rounds

Double-Hoover Sort Algorithm

ldea: Bucket Sort the items w.r.t. p(i)

Two "Hoovers", L and R, scan through the array repeatedly in
log(n) rounds

n round i, each Hoover sucks in items that costs i comparisons
to be inserted.

Round 1

Double-Hoover Sort Algorithm

ldea: Bucket Sort the items w.r.t. p(i)

Two "Hoovers", L and R, scan through the array repeatedly in
log(n) rounds

n round i, each Hoover sucks in items that costs i comparisons
to be inserted.

Round 1

Double-Hoover Sort Algorithm

ldea: Bucket Sort the items w.r.t. p(i)

Two "Hoovers", L and R, scan through the array repeatedly in
log(n) rounds

n round i, each Hoover sucks in items that costs i comparisons
to be inserted.

Round 2

69 | 82

Double-Hoover Sort Algorithm

ldea: Bucket Sort the items w.r.t. p(i)

Two "Hoovers", L and R, scan through the array repeatedly in
log(n) rounds

n round i, each Hoover sucks in items that costs i comparisons
to be inserted.

Round 2

Double-Hoover Sort Algorithm

ldea: Bucket Sort the items w.r.t. p(i)

Two "Hoovers", L and R, scan through the array repeatedly in
log(n) rounds

Round 3

28 | 69 | 71 | 82

Double-Hoover Sort Algorithm

ldea: Bucket Sort the items w.r.t. p(i)

Two "Hoovers", L and R, scan through the array repeatedly in
log(n) rounds

n round i, each Hoover sucks in items that costs i comparisons
to be inserted.

Finally, combine items in both Hoovers

Each g; is sucked into the Hoovers before round log(min {nl.l, ;71-”})

Sorting countries by population (n=261)

Predictions: ranking x years ago

-
~~
0
-
O
0
-
O
Q.
&
O
)
+

—— Merge Sort —— Cook-Kim Sort

Quick Sort - Displacement Sort
—— Tim Sort Double-Hoover Sort
—— OESM

20 25 30 35 40 45 50 55 60

gap in years

Classes of consecutive items (n=1,000,000)

Predictions: random position within class

—— Merge Sort —— Cook-Kim Sort

Quick Sort - Displacement Sort
—— Tim Sort Double-Hoover Sort
—— OESM

40

W
o

N
o

-
~
"
-
@)
%))
-
©
Q
-
@)
O
H

—
o

0.4 0.6

#classes / n

Repeatedly add £ 1 to p(i), for i random (n=1,000,000)

-
~
"
-
@)
%))
-
©
Q
-
@)
O
+

—— Merge Sort —— Cook-Kim Sort

Quick Sort - Displacement Sort
—— Tim Sort Double-Hoover Sort
—— OESM

200 300 400 500 600 700 800 900 1000

#timesteps / n

Fraction r of items damaged (n=100,000)

< random if an item damaged, otherwise correct

B
o

35

w
o

N
w

=
w

=
o

—— Merge Sort —— Cook-Kim Sort
Quick Sort —— Displacement Sort

—— Tim Sort Double-Hoover Sort

—— OESM - Dirty-Clean Sort

-
S~
(V)]
-
@)
(V)]
—
M 20
Q.
&
@)
@)
H

(9]

0.4 0.6

damage ratio r

Fraction r of items damaged (n=100,000)

< random if both items damaged, otherwise correct

—— Merge Sort —— Cook-Kim Sort
Quick Sort —— Displacement Sort

—— Tim Sort Double-Hoover Sort

—— OESM = Dirty-Clean Sort

&
o

w
w,

30

N
()]

—
(%))

-
\
(V)]
-
@)
(Vp)
-
MM 20
@8
-
@)
@)
H

—
o

(9]

o

0.4 0.6

damage ratio r

