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Motivation
Multi-agent reinforcement learning (MARL)

▶ Empirical success: autonomous driving, Go, StarCraft, Dota2, Poker
▶ Practical scenario: partial observations and function approximation
▶ Our focus: the competitive setting

Posterior sampling
▶ A powerful method in practice
▶ Extensively studied in single-agent RL
▶ Explicit construction of bonus terms is not needed
▶ Lacks sufficient theoretical understanding in MARL

Question

Can we design provably sample-efficient posterior sampling algorithms for
competitive RL with even partial observations under general function approximation?

1 / 13



Contribution

Propose the two generalized eluder coefficient (GEC) as the complexity measure
for MARL with function approximation, named self-play GEC and adversarial GEC

Propose a model-based posterior sampling algorithm for self-play with general
function approximation under both fully and partially observable settings

Propose a model-based posterior sampling algorithm for adversarial learning with
general function approximation under both fully and partially observable settings

Theoretically prove regret bounds for our proposed algorithms, incorporating the
proposed self-play GEC and adversarial GEC.
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Problem Setup
Zero-sum Fully Observable Markov Game(FOMG)

▶ State space S, action spaces A and B, total steps H, and reward function rh(s, a, b).
▶ The state s transitions to s′ under an unknown probability distribution Ph(s

′|s, a, b).
▶ The state s is observable to agents

Zero-Sum Partially Observable Markov Games (POMG)
▶ An observation space O
▶ Only a partial observation o ∈ O of state s is observable, sampled from an unknown

emission kernel Oh(o|s)
▶ Reward function rh(o, a, b)

Function approximation
▶ We use a function f in a function class F to approximate the environment f∗ ∈ F .
▶ f∗ represents the true transition kernel P for FOMG, and the true transition kernel P,

emission kernel O, and initial state distribution µ1 for POMG.
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Problem Setup

Self-play setting
▶ The learner can control both players to find an approximate Nash equilibrium
▶ The objective is designing sample-efficient algorithms to generate a sequence of

policy pairs {(πt, νt)}Tt=1 to minimize the following regret

Regsp(T ) :=
∑T

t=1

[
V ∗,νt

f∗ − V πt,∗
f∗

]
.

Adversarial setting
▶ Only single player is controllable, and the opponent plays arbitrary policies.
▶ The objective is learning policies {πt}Tt=1 to maximize the overall cumulative rewards

in the presence of an adversary such that the following regret is minimized

Regadv(T ) :=
∑T

t=1

[
V ∗
f∗ − V πt,νt

f∗

]
.
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Algorithm for the Self-Play Setting

Self-play algorithm for Max-Player (Player 1) at each step t ≤ [T ]

1. Draw a model f
t ∼ pt(f) ∝ p0(f) exp[γ1V

∗
f +

∑t−1
τ=1

∑H
h=1 L

τ
h(f)].

Compute πt by letting (πt, νt) be the Nash equilibrium of V π,ν

f
t .

2. Draw a model f t ∼ qt(f) ∝ q0(f) exp[−γ2V
πt,∗
f +

∑t−1
τ=1

∑H
h=1 L

τ
h(f)].

Compute νt by letting νt be the best response of πt w.r.t. V π,ν
ft .

3. Collect data Dt via an exploration policy σt and calculate {Lt
h(f)}Hh=1 using Dt.

Return: (π1, ..., πT ).

Main idea:
▶ Optimistic model-based posterior sampling
▶ Optimism term + Likelihood function
▶ Step 2 aims to assist the learning for the max-player by exploiting her weakness
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Algorithm for the Self-Play Setting
Example setups of data exploration:

▶ σt = (πt, νt);

▶ FOMG: Dt = {(sth, ath, bth, sth+1)}Hh=1 and

Lt
h(f) = η logPf,h(s

t
h+1 | sth, ath, bth).

▶ POMG: Dt = {τ th}Hh=1 with τ th := (ot1, a
t
1, b

t
1 . . . , o

t
h, a

t
h, b

t
h) and

Lt
h(f) = η logPf,h(τ

t
h).

where we define Pf,h(τh) :=
∫
Sh µf,1(s1)

∏h−1
h′=1[Of,h′(oh′ |sh′)Pf,h′(sh′+1|sh′ , ah′ , bh′)]

Of,h(oh|sh)ds1:h under an approximation function f .

The self-play algorithm for Min-Player (Player 2) is symmetric to the above one
for Max-Player and returns the policies (ν1, ..., νT ).
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Theoretical Result
Definition 1 (Self-Play GEC)
For any sequences of functions f t, gt ∈ F , suppose that a pair of policies (πt, νt) satisfies: (a) πt = argmaxπ minν V π,ν

ft

and νt = argminν V πt,ν
gt

, or (b) νt = argminν maxπ V π,ν
ft and πt = argmaxπ V π,νt

gt
. Denoting the joint exploration policy

as σt depending on f t and gt, for any ρ ∈ {f, g} and (πt, νt) following (a) and (b), the self-play GEC dGEC is defined as
the minimal constant d satisfying∣∣∣∑T

t=1

(
V πt,νt

ρt
− V πt,νt

f∗
)

︸ ︷︷ ︸
prediction error

∣∣∣ ≤ [
d
∑H

h=1

∑T
t=1

(∑t−1
τ=1 E(στ ,h)ℓ(ρ

t, ξτh)
)

︸ ︷︷ ︸
training error

] 1
2
+ 2H(dHT )

1
2 + ϵHT︸ ︷︷ ︸

burn-in error

,

where (στ , h) implies running the joint exploration policy στ to step h to collect a data point ξτh.

ℓ(f, ξh) is determined for FOMGs with ξh = (sh, ah, bh) and POMGs with ξh = τh as
FOMG: D2

He(Pf,h(·|ξh),Pf∗,h(·|ξh)), POMG: 1/2 ·
(√

Pf,h(ξh)/Pf∗,h(ξh)− 1
)2

.

Intuition: hypotheses having a small training error on a well-explored dataset imply a
small out-of-sample prediction error, characterizing the hardness of exploration.
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Theoretical Result

Theorem 2
With proper settings of η, γ1, γ2, and ϵ, when the number of rounds T is sufficiently
large, for both FOMG and POMG, the proposed self-play algorithm admits a regret of

E[Regsp(T )] ≤ 12
√

dGECHT · [ω(4HT, p0) + ω(4HT, q0)].

The regret sublinearly depends on T , dGEC, and ω

ω measures how well the prior distributions cover the optimal model f∗

Definition 3 (Prior around the True Model)
Given β > 0 and any distribution p0 ∈ ∆F , we define a quantity ω(β, p0) as ω(β, p0) = infε>0{βε− ln p0[F(ε)]},
where we define the classes F(ε) := {f ∈ F : suph,s,a,b KL

1
2 (Pf∗,h(· | s, a, b)∥Pf,h(· | s, a, b)) ≤ ε} for FOMGs

and F(ε) := {f ∈ F : supπ,ν KL
1
2 (Pπ,ν

f∗,H∥Pπ,ν
f,H) ≤ ε} for POMGs.
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Algorithm for the Adversarial Setting

Adversarial learning algorithm for the main player at each step t ≤ [T ]

1. Draw a model f t ∼ pt(f) ∝ p0(f) exp[γV ∗
f +

∑t−1
τ=1

∑H
h=1 L

τ
h(f)].

Compute πt by letting (πt, νt) be the Nash equilibrium of V π,ν
ft .

2. The opponent picks an arbitrary policy νt.
3. Collect data Dt by executing an exploration policy σt = (πt, νt) cnd calculate the

likelihood functions {Lt
h(f)}Hh=1.

Return: (π1, . . . , πT ).

Differences from the self-play setting:
▶ The opponent plays an arbitrary policy νt that is uncontrolled by the algorithm
▶ The exploration policy σt is defined based on the the opponent’s arbitrary policy νt
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Theoretical Results
Definition 4 (Adversarial GEC)
For any sequence of functions {f t}Tt=1 with f t ∈ F and any sequence of the opponent’s policies {νt}Tt=1, suppose
that the main player’s policies {µt}Tt=1 are generated via µt = argmaxπ minν V π,ν

ft . Denoting the joint exploration

policy as {σt}Tt=1 depending on {f t}Tt=1, the adversarial GEC dGEC is defined as the minimal constant d satisfying∑T
t=1

(
V πt,νt

ft − V πt,νt

f∗

)
≤

[
d
∑H

h=1

∑T
t=1

(∑t−1
τ=1 E(στ ,h)ℓ(f

t, ξτh)
)] 1

2
+ 2H(dHT )

1
2 + ϵHT.

Difference from self-play GEC: the opponent’s policy νt is arbitrary and uncontrolled

Theorem 5
With proper settings of η, γ1, γ2, and ϵ, when the number of rounds T is sufficiently
large, for both FOMG and POMG, the adversarial learning algorithm admits a regret of

E[Regadv(T )] ≤ 4
√
dGECHT · ω(4HT, p0).

The regret sublinearly depends on T , dGEC, and ω
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Examples
Classes with low self-play/adversarial GEC cover a wide range of known
Markov game (MG) classes

FOMG:
▶ Linear MG. rh(s, a, b) = w⊤

h ϕ(s, a, b) and Ph(s
′|s, a, b) = θh(s

′)⊤ϕ(s, a, b) with
ϕ(s, a, b) ∈ Rd. We have dGEC = Õ(H3d).

▶ Linear Mixture MG. Ph(s
′|s, a, b) = θ⊤

h ϕ(s, a, b, s
′) with ϕ(s, a, b, s′) ∈ Rd. We have

dGEC = Õ(H3d).
▶ MG with Low Self-Play Witness Rank. An inner product of specific vectors in Rd

can lower bound witnessed model misfit and upper bound the Bellman error with a
coefficient κwit. We have dGEC = Õ(H3d/κ2

wit).

POMG:
▶ α-Weakly Revealing POMG. The matrix by Oh(·|·) has singular values ≥ α. We

have dGEC = Õ(H3|O|3|A|2|B|2|S|2/α2).
▶ Decodable POMG. An unknown decoder ϕh recovers states from observations via

ϕh(o) = s. We have dGEC = Õ(H3|O|3|A|2|B|2).
11 / 13



Discussion of ω(β, p0)

F is finite

▶ ω(β, p0) ≤ log |F| with setting p0 = Unif(F)

F is infinite

▶ ω(β, p0) ≤ log-covering number of F w.r.t. the ℓ1 distance.

We generalize existing results of ω(β, p0) for the fully observable setting to the
partially observable setting, which is of independent interest
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Thank you!
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