Posterior Sampling for Competitive RL: Function Approximation and Partial Observation

```
Shuang Qiu<sup>1*</sup> Ziyu Dai<sup>2*</sup> Han Zhong<sup>3</sup> Zhaoran Wang<sup>4</sup> Zhuoran Yang<sup>5</sup> Tong Zhang<sup>1</sup> (*Equal contribution)
```

¹ HKUST ² New York University ³ Peking University ⁴ Northwestern University ⁵ Yale University

NeurIPS 2023

Motivation

- Multi-agent reinforcement learning (MARL)
 - Empirical success: autonomous driving, Go, StarCraft, Dota2, Poker
 - Practical scenario: partial observations and function approximation
 - Our focus: the competitive setting

Posterior sampling

- A powerful method in practice
- Extensively studied in single-agent RL
- Explicit construction of bonus terms is not needed
- Lacks sufficient theoretical understanding in MARL

Question

Can we design provably sample-efficient posterior sampling algorithms for competitive RL with even partial observations under general function approximation?

Contribution

- Propose the two generalized eluder coefficient (GEC) as the complexity measure for MARL with function approximation, named self-play GEC and adversarial GEC
- Propose a model-based posterior sampling algorithm for self-play with general function approximation under both fully and partially observable settings
- Propose a model-based posterior sampling algorithm for adversarial learning with general function approximation under both fully and partially observable settings
- Theoretically prove regret bounds for our proposed algorithms, incorporating the proposed self-play GEC and adversarial GEC.

Problem Setup

- Zero-sum Fully Observable Markov Game(FOMG)
 - ▶ State space S, action spaces A and B, total steps H, and reward function $r_h(s, a, b)$.
 - ▶ The state s transitions to s' under an unknown probability distribution $\mathbb{P}_h(s'|s,a,b)$.
 - ▶ The state *s* is observable to agents
- Zero-Sum Partially Observable Markov Games (POMG)
 - ▶ An observation space O
 - ▶ Only a partial observation $o \in \mathcal{O}$ of state s is observable, sampled from an unknown emission kernel $\mathbb{O}_h(o|s)$
 - Reward function $r_h(o, a, b)$
- Function approximation
 - ▶ We use a function f in a function class \mathcal{F} to approximate the environment $f^* \in \mathcal{F}$.
 - f^* represents the true transition kernel \mathbb{P} for FOMG, and the true transition kernel \mathbb{P} , emission kernel \mathbb{O} , and initial state distribution μ_1 for POMG.

Problem Setup

Self-play setting

- ▶ The learner can control both players to find an approximate Nash equilibrium
- ▶ The objective is designing sample-efficient algorithms to generate a sequence of policy pairs $\{(\pi^t, \nu^t)\}_{t=1}^T$ to minimize the following regret

$$\operatorname{Reg}^{\operatorname{sp}}(T) := \sum_{t=1}^{T} \left[V_{f^*}^{*,\nu^t} - V_{f^*}^{\pi^t,*} \right].$$

Adversarial setting

- Only single player is controllable, and the opponent plays arbitrary policies.
- The objective is learning policies $\{\pi^t\}_{t=1}^T$ to maximize the overall cumulative rewards in the presence of an adversary such that the following regret is minimized

$$\operatorname{Reg}^{\operatorname{adv}}(T) := \sum_{t=1}^{T} \left[V_{f^*}^* - V_{f^*}^{\pi^t, \nu^t} \right].$$

Algorithm for the Self-Play Setting

- Self-play algorithm for Max-Player (Player 1) at each step $t \leq [T]$
 - 1. Draw a model $\overline{f}^t \sim p^t(f) \propto p^0(f) \exp[\gamma_1 V_f^* + \sum_{\tau=1}^{t-1} \sum_{h=1}^H L_h^{\tau}(f)]$. Compute π^t by letting $(\pi^t, \overline{\nu}^t)$ be the Nash equilibrium of $V_{\overline{f}^t}^{\pi, \nu}$.
 - 2. Draw a model $\underline{f}^t \sim q^t(f) \propto q^0(f) \exp[-\gamma_2 V_f^{\pi^t,*} + \sum_{\tau=1}^{t-1} \sum_{h=1}^H L_h^{\tau}(f)]$. Compute $\underline{\nu}^t$ by letting $\underline{\nu}^t$ be the best response of π^t w.r.t. $V_{f^t}^{\pi,\nu}$.
 - 3. Collect data \mathcal{D}^t via an exploration policy σ^t and calculate $\{L_h^t(f)\}_{h=1}^H$ using \mathcal{D}^t . Return: $(\pi^1, ..., \pi^T)$.

Main idea:

- Optimistic model-based posterior sampling
- ► Optimism term + Likelihood function
- Step 2 aims to assist the learning for the max-player by exploiting her weakness

Algorithm for the Self-Play Setting

- Example setups of data exploration:

 - FOMG: $\mathcal{D}^t = \{(s_h^t, a_h^t, b_h^t, s_{h+1}^t)\}_{h=1}^H$ and

$$L_h^t(f) = \eta \log \mathbb{P}_{f,h}(s_{h+1}^t \mid s_h^t, a_h^t, b_h^t).$$

 $\blacktriangleright \ \ \mathsf{POMG:} \ \mathcal{D}^t = \{\tau_h^t\}_{h=1}^H \ \text{with} \ \tau_h^t := (o_1^t, a_1^t, b_1^t \dots, o_h^t, a_h^t, b_h^t) \ \text{and}$

$$L_h^t(f) = \eta \log \mathbf{P}_{f,h}(\tau_h^t).$$

where we define $\mathbf{P}_{f,h}(\tau_h) := \int_{\mathcal{S}^h} \mu_{f,1}(s_1) \prod_{h'=1}^{h-1} [\mathbb{O}_{f,h'}(o_{h'}|s_{h'}) \mathbb{P}_{f,h'}(s_{h'+1}|s_{h'},a_{h'},b_{h'})]$ $\mathbb{O}_{f,h}(o_h|s_h)\mathrm{d}s_{1:h}$ under an approximation function f.

• The self-play algorithm for Min-Player (Player 2) is symmetric to the above one for Max-Player and returns the policies $(\nu^1,...,\nu^T)$.

Theoretical Result

Definition 1 (Self-Play GEC)

For any sequences of functions $f^t, g^t \in \mathcal{F}$, suppose that a pair of policies (π^t, ν^t) satisfies: (a) $\pi^t = \operatorname{argmax}_{\pi} \min_{\nu} V_{f^t}^{\pi, \nu}$ and $\nu^t = \operatorname{argmin}_{\nu} V_{g^t}^{\pi^t, \nu}$, or (b) $\nu^t = \operatorname{argmin}_{\nu} \max_{\pi} V_{f^t}^{\pi, \nu}$ and $\pi^t = \operatorname{argmax}_{\pi} V_{g^t}^{\pi, \nu^t}$. Denoting the joint exploration policy as σ^t depending on f^t and g^t , for any $\rho \in \{f, g\}$ and (π^t, ν^t) following (a) and (b), the self-play GEC d_{GEC} is defined as the minimal constant d satisfying

$$\Big|\sum_{t=1}^{T}\underbrace{\left(V_{\rho^t}^{\pi^t,\nu^t}-V_{f^*}^{\pi^t,\nu^t}\right)}_{\text{prediction error}}\Big| \leq \Big[d\sum_{h=1}^{H}\sum_{t=1}^{T}\underbrace{\left(\sum_{\tau=1}^{t-1}\mathbb{E}_{(\sigma^\tau,h)}\ell(\rho^t,\xi_h^\tau)\right)}_{\text{training error}}\Big]^{\frac{1}{2}} + \underbrace{2H(dHT)^{\frac{1}{2}}+\epsilon HT}_{\text{burn-in error}},$$

where (σ^{τ}, h) implies running the joint exploration policy σ^{τ} to step h to collect a data point ξ_h^{τ} .

- $\bullet \ \ell(f,\xi_h) \text{ is determined for FOMGs with } \xi_h = (s_h,a_h,b_h) \text{ and POMGs with } \xi_h = \tau_h \text{ as } \\ \text{FOMG: } D^2_{\mathrm{He}}(\mathbb{P}_{f,h}(\cdot|\xi_h),\mathbb{P}_{f^*,h}(\cdot|\xi_h)), \quad \text{POMG: } 1/2 \cdot \left(\sqrt{\mathbf{P}_{f,h}(\xi_h)/\mathbf{P}_{f^*,h}(\xi_h)} 1\right)^2.$
- Intuition: hypotheses having a small training error on a well-explored dataset imply a small out-of-sample prediction error, characterizing the hardness of exploration.

Theoretical Result

Theorem 2

With proper settings of η , γ_1 , γ_2 , and ϵ , when the number of rounds T is sufficiently large, for both FOMG and POMG, the proposed self-play algorithm admits a regret of

$$\mathbb{E}[\operatorname{Reg^{sp}}(T)] \le 12\sqrt{d_{\operatorname{GEC}}HT \cdot [\omega(4HT, p^0) + \omega(4HT, q^0)]}.$$

- ullet The regret sublinearly depends on $T,\,d_{\mathrm{GEC}},$ and ω
- ullet ω measures how well the prior distributions cover the optimal model f^*

Definition 3 (Prior around the True Model)

Given $\beta>0$ and any distribution $p^0\in\Delta_{\mathcal{F}}$, we define a quantity $\omega(\beta,p^0)$ as $\omega(\beta,p^0)=\inf_{\varepsilon>0}\{\beta\varepsilon-\ln p^0[\mathcal{F}(\varepsilon)]\}$, where we define the classes $\mathcal{F}(\varepsilon):=\{f\in\mathcal{F}:\sup_{h,s,a,b}\mathrm{KL}^{\frac{1}{2}}(\mathbb{P}_{f^*,h}(\cdot\,|\,s,a,b))\|\mathbb{P}_{f,h}(\cdot\,|\,s,a,b))\leq\varepsilon\}$ for FOMGs and $\mathcal{F}(\varepsilon):=\{f\in\mathcal{F}:\sup_{\pi,\nu}\mathrm{KL}^{\frac{1}{2}}(\mathbf{P}_{f^*,H}^{\pi,\nu})\leq\varepsilon\}$ for POMGs.

Algorithm for the Adversarial Setting

- Adversarial learning algorithm for the main player at each step $t \leq [T]$
 - 1. Draw a model $f^t \sim p^t(f) \propto p^0(f) \exp[\gamma V_f^* + \sum_{\tau=1}^{t-1} \sum_{h=1}^H L_h^{\tau}(f)]$. Compute π^t by letting $(\pi^t, \overline{\nu}^t)$ be the Nash equilibrium of $V_{f^t}^{\pi, \nu}$.
 - 2. The opponent picks an arbitrary policy ν^t .
 - 3. Collect data \mathcal{D}^t by executing an exploration policy $\sigma^t = (\pi^t, \nu^t)$ and calculate the likelihood functions $\{L_h^t(f)\}_{h=1}^H$.

Return:
$$(\pi^1, \dots, \pi^T)$$
.

- Differences from the self-play setting:
 - lacktriangleright The opponent plays an arbitrary policy u^t that is uncontrolled by the algorithm
 - lacktriangleright The exploration policy σ^t is defined based on the the opponent's arbitrary policy u^t

Theoretical Results

Definition 4 (Adversarial GEC)

For any sequence of functions $\{f^t\}_{t=1}^T$ with $f^t \in \mathcal{F}$ and any sequence of the opponent's policies $\{\nu^t\}_{t=1}^T$, suppose that the main player's policies $\{\mu^t\}_{t=1}^T$ are generated via $\mu^t = \operatorname{argmax}_{\pi} \min_{\nu} V_{f^t}^{\pi,\nu}$. Denoting the joint exploration policy as $\{\sigma^t\}_{t=1}^T$ depending on $\{f^t\}_{t=1}^T$, the adversarial GEC d_{GEC} is defined as the minimal constant d satisfying

$$\sum_{t=1}^{T} \left(V_{f^t}^{\pi^t, \nu^t} - V_{f^*}^{\pi^t, \nu^t} \right) \leq \left[d \sum_{h=1}^{H} \sum_{t=1}^{T} \left(\sum_{\tau=1}^{t-1} \mathbb{E}_{(\sigma^\tau, h)} \ell(f^t, \xi_h^\tau) \right) \right]^{\frac{1}{2}} + 2H(dHT)^{\frac{1}{2}} + \epsilon HT.$$

ullet Difference from self-play GEC: the opponent's policy u^t is arbitrary and uncontrolled

Theorem 5

With proper settings of η , γ_1 , γ_2 , and ϵ , when the number of rounds T is sufficiently large, for both FOMG and POMG, the adversarial learning algorithm admits a regret of

$$\mathbb{E}[\operatorname{Reg}^{\operatorname{adv}}(T)] \le 4\sqrt{d_{\operatorname{GEC}}HT \cdot \omega(4HT, p^0)}.$$

ullet The regret sublinearly depends on T, d_{GEC} , and ω

Examples

 Classes with low self-play/adversarial GEC cover a wide range of known Markov game (MG) classes

FOMG:

- ▶ Linear MG. $r_h(s,a,b) = \mathbf{w}_h^{\top} \phi(s,a,b)$ and $\mathbb{P}_h(s'|s,a,b) = \boldsymbol{\theta}_h(s')^{\top} \phi(s,a,b)$ with $\phi(s,a,b) \in \mathbb{R}^d$. We have $d_{\text{GEC}} = \widetilde{O}(H^3d)$.
- ▶ Linear Mixture MG. $\mathbb{P}_h(s'|s,a,b) = \boldsymbol{\theta}_h^{\top} \boldsymbol{\phi}(s,a,b,s')$ with $\boldsymbol{\phi}(s,a,b,s') \in \mathbb{R}^d$. We have $d_{\text{GEC}} = \widetilde{O}(H^3d)$.
- ▶ MG with Low Self-Play Witness Rank. An inner product of specific vectors in \mathbb{R}^d can lower bound witnessed model misfit and upper bound the Bellman error with a coefficient κ_{wit} . We have $d_{\text{GEC}} = \widetilde{O}(H^3 d/\kappa_{\text{wit}}^2)$.

POMG:

- ▶ α -Weakly Revealing POMG. The matrix by $\mathbb{O}_h(\cdot|\cdot)$ has singular values $\geq \alpha$. We have $d_{\text{GEC}} = \widetilde{O}(H^3|\mathcal{O}|^3|\mathcal{A}|^2|\mathcal{B}|^2|\mathcal{S}|^2/\alpha^2)$.
- ▶ **Decodable POMG.** An unknown decoder ϕ_h recovers states from observations via $\phi_h(o) = s$. We have $d_{\text{GEC}} = \widetilde{O}(H^3 |\mathcal{O}|^3 |\mathcal{A}|^2 |\mathcal{B}|^2)$.

Discussion of $\omega(\beta, p^0)$

- \bullet \mathcal{F} is finite
 - $\omega(\beta, p^0) \leq \log |\mathcal{F}|$ with setting $p^0 = \mathrm{Unif}(\mathcal{F})$
- \bullet \mathcal{F} is infinite
 - $\omega(\beta, p^0) \leq \text{log-covering number of } \mathcal{F} \text{ w.r.t. the } \ell_1 \text{ distance.}$
- We generalize existing results of $\omega(\beta,p^0)$ for the fully observable setting to the partially observable setting, which is of independent interest

Thank you!