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Motivation

@ Multi-agent reinforcement learning (MARL)

» Empirical success: autonomous driving, Go, StarCraft, Dota2, Poker
» Practical scenario: partial observations and function approximation
» Our focus: the competitive setting

@ Posterior sampling

A powerful method in practice

Extensively studied in single-agent RL

Explicit construction of bonus terms is not needed
Lacks sulfficient theoretical understanding in MARL

vV V. vy

@ Question

Can we design provably sample-efficient posterior sampling algorithms for
competitive RL with even partial observations under general function approximation?
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Contribution

@ Propose the two generalized eluder coefficient (GEC) as the complexity measure
for MARL with function approximation, named self-play GEC and adversarial GEC

@ Propose a model-based posterior sampling algorithm for self-play with general
function approximation under both fully and partially observable settings

@ Propose a model-based posterior sampling algorithm for adversarial learning with
general function approximation under both fully and partially observable settings

@ Theoretically prove regret bounds for our proposed algorithms, incorporating the
proposed self-play GEC and adversarial GEC.
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Problem Setup

@ Zero-sum Fully Observable Markov Game(FOMG)

» State space S, action spaces A and 1, total steps H, and reward function r (s, a,b).
» The state s transitions to s’ under an unknown probability distribution Py, (s'|s, a, b).
» The state s is observable to agents

@ Zero-Sum Partially Observable Markov Games (POMG)

» An observation space O

» Only a partial observation o € O of state s is observable, sampled from an unknown
emission kernel Oy, (ols)

» Reward function rp (o, a, b)

@ Function approximation

» We use a function f in a function class F to approximate the environment f* € F.
» f* represents the true transition kernel P for FOMG, and the true transition kernel P,
emission kernel O, and initial state distribution p; for POMG.
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Problem Setup

@ Self-play setting

» The learner can control both players to find an approximate Nash equilibrium
» The objective is designing sample-efficient algorithms to generate a sequence of
policy pairs {(r*,v*)}L_; to minimize the following regret

Reg™(T) = S0, [V — Vi),

@ Adversarial setting

» Only single player is controllable, and the opponent plays arbitrary policies.
» The objective is learning policies {7*}~_; to maximize the overall cumulative rewards
in the presence of an adversary such that the following regret is minimized

Reg™™(T) == Y, [Vi — Vi
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Algorithm for the Self-Play Setting

@ Self-play algorithm for Max-Player (Player 1) at each step ¢ < [T

1. Draw a model 7' ~ p'(f) o p(f) exp[yi Vi + 3 2 10 YA
Compute 7! by letting (7%, 7") be the Nash equilibrium of V e

2. Draw a model f* ~ ¢'(f) o ¢°(f) exp[f’ygi + Z'T 11 Z,, L7 (1))
Compute v? by letting v* be the best response of 7¢ w.r.t. V” ”.

3. Collect data D! via an exploration policy o* and calculate {L! (f)}_, using D'.
Return: (z!, ..., 7T).

@ Main idea:

» Optimistic model-based posterior sampling
» Optimism term + Likelihood function
» Step 2 aims to assist the learning for the max-player by exploiting her weakness
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Algorithm for the Self-Play Setting

@ Example setups of data exploration:
> ot = ('),
» FOMG: D' = {(s},,a},,b},, s}, ,1)}7_, and
Li,(f) = n1og Py n(sh41 | 85, afy, b)-
» POMG: D! = {7} }L | with 7} := (of,al, bl ... 0}, al,bt) and
L,(f) = nlog P yn(73).

where we define Py, (74) := [ pus.1(s1) [T [Of. 0 (0n |51 )P g e (w11 ans, b))
O¢,1(on|sn)ds1., under an approximation function f.

@ The self-play algorithm for Min-Player (Player 2) is symmetric to the above one
for Max-Player and returns the policies (v, ..., v7).
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Theoretical Result

Definition 1 (Self-Play GEC)
For any sequences of functions f¢, g* € F, suppose that a pair of policies (n?, v?) satisfies: (a) 7t = argmax, min, Vf’;”’
and v = argmin,, V;;t”’, or (b) v* = argmin, max, V., and 7' = argmax,, Vg’;’”t. Denoting the joint exploration policy
as o! depending on f* and g?, for any p € {f, g} and (=, v*) following (a) and (b), the self-play GEC dggc is defined as
the minimal constant d satisfying

at ot at ot _ 1 1
| =L, (v v | < [asi B, (S0 Bor et €)) | * + 2H@HT)E + €nT,
~—_— —

prediction error training error burn-in error

where (o7, h) implies running the joint exploration policy o7 to step h to collect a data point £7 .

@ ((f,&n) is determined for FOMGs with &, = (sp, an, by) and POMGs with &, = 7, as
FOMG: Die(Py(16n), By aCl€n)), POMG: 1/2- (\/P 1€ /Py n(én) —1)

@ Intuition: hypotheses having a small training error on a well-explored dataset imply a

small out-of-sample prediction error, characterizing the hardness of exploration.
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Theoretical Result

Theorem 2

With proper settings of n, v1, 2, and e, when the number of rounds T is sufficiently
large, for both FOMG and POMG, the proposed self-play algorithm admits a regret of

E[Reg®™(T)] < 12v/daecHT - [w(4HT, p°) + w(4HT, ¢0)].

@ The regret sublinearly depends on 7', dggc, and w

@ w measures how well the prior distributions cover the optimal model f*

Definition 3 (Prior around the True Model)

Given 8 > 0 and any distribution p° € Az, we define a quantity w(3, p°) as w(3,p°) =

/ = infeso{Be — Inp®[F(e)]},
where we define the classes F(¢) := {f € F : supy, s 4 KL2 (Ppx (- [s,a,b)[[Pr (- |s,a,b)) < e} for FOMGs
and F(e) := {f € F : sup,, KL?2 (PW*VHHP7r 7) < e} for POMGs.
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Algorithm for the Adversarial Setting

@ Adversarial learning algorithm for the main player at each step t < [T

1. Draw a model f* ~ p*(f) o p°(f) exp[yV} + S04 20 L (/).
Compute 7* by letting (7*,7*) be the Nash equilibrium of V"

2. The opponent picks an arbitrary policy v*.

3. Collect data D! by executing an exploration policy o = (7, %) cnd calculate the
likelihood functions {L¢ (f)}E,.

Return: (7!, ... 77).

@ Differences from the self-play setting:

» The opponent plays an arbitrary policy v* that is uncontrolled by the algorithm
» The exploration policy o is defined based on the the opponent’s arbitrary policy v*

9/13



Theoretical Results

Definition 4 (Adversarial GEC)

For any sequence of functions {f*}Z_, with f* € F and any sequence of the opponent’s policies {v*}Z_,, suppose
that the main player's policies {}1_, are generated via u* = argmax, min, Vf”;”. Denoting the joint exploration
policy as {o*}~_, depending on {f*}%_,, the adversarial GEC dcgc is defined as the minimal constant d satisfying

bt wt vt — 5 1
S (Vi = vEY) < [aSi 2L (S Eer w4 €D)) | * + 2H(AHT)E + eHT.

@ Difference from self-play GEC: the opponent’s policy ! is arbitrary and uncontrolled

Theorem 5

With proper settings of n, 1, v2, and e, when the number of rounds T is sufficiently
large, for both FOMG and POMG, the adversarial learning algorithm admits a regret of

E[Reg®™(T)] < 4v/daecHT - w(4HT, p).

@ The regret sublinearly depends on T', dgec, and w
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Examples

@ Classes with low self-play/adversarial GEC cover a wide range of known
Markov game (MG) classes

e FOMG:
» Linear MG. r,(s,a,b) = w/ ¢(s,a,b) and Py(s'|s,a,b) = O,(s")" ¢(s,a,b) with
¢(S, a, b) € R%. We have dgec = O(Hdd)
» Linear Mixture MG. P, (s'|s,a,b) = 0, ¢(s,a,b, s') with ¢(s,a,b, s’) € RY. We have
daec = O(H3d).
» MG with Low Self-Play Witness Rank. An inner product of specific vectors in R?
can lower bound witnessed model misfit and upper bound the Bellman error with a

coefficient k. We have dgpe = O(H3d/ k2

wit/*
e POMG:
» a-Weakly Revealing POMG. The matrix by Oy (:|-) has singular values > a. We
have daec = O(H3|OP|Al2B[2[S|?/a?).
» Decodable POMG. An unknown decoder ¢;, recovers states from observations via
dn(0) = s. We have dgrc = O(H?3|O3|A]2|B|?).
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Discussion of w(s, p°)

@ Fis finite
» w(B,p%) < log|F| with setting p® = Unif(F)
@ Fisinfinite
» w(B,p°) < log-covering number of F w.r.t. the ¢; distance.

@ We generalize existing results of w(3, p°) for the fully observable setting to the
partially observable setting, which is of independent interest
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Thank you!
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