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VARIATIONAL INFERENCE FOR DEEP MODELS

A. Bayesian inference can provide excellent model generalisation and calibration to deep
overparameterised models.

B. Accurate Bayesian inference is impossible tor any complex NN model and hence in
oractice we rely on approximate inference.

C.Variational inference optimises over a chosen tamily of distributions to approach the true
posterior.

D. The efticacy of VI hinges on this choice, we propose to use a highly flexible family of
distributions called implicit distributions.



IMPLICIT DISTRIBUTIONS

Easy to sample from but have no closed form density tor computing log-likelihoods.

We call these networks generators or neural samplers. (Hypernetworks)
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CHALLENGES

1. For VI we need to measure a KL which is not trivial with implicit distributions.

BASE DIST

DEF™
VARIATIONAL
APPROX. Gv(2).

Generator

2. Cannot evaluate entropy of an implicit distribution.

ELBO:

3. Cannot evaluate gradients (w.r.t ¥) of this unavailable entropy.

Footnote, add citations for UIVI, SIVI, D-SIVI



APPROXIMATING ENTROPY VIA LINEARISATION

Linearise the g about its input using Taylor series —

TRACTABLE:



APPROXIMATE ELBO AND SCALABILITY

APPROX.
ENTROPY

Jacobians and their log determinant are very expensive, so can further derive a lower bouna
using fundamental LA theorems.

Scalable Entropy approximation



TESTING THE VARIATIONAL APPROXIMATION

We test our variational approximation using deep BNNs as they contain millions of global latent variables.

In UCI regression benchmarks we compare our posterior quality with HMC, and we compare within the
two entropy approximations.

Table F.1: UCI regression datasets. We report RMSE (] ) on the test set and average across three
different seeds for each model to quantify the variance in the results.

Table F.2: UCI regression datasets. We report log-likelihood (1) on the test set and average across
three different seeds for each model to quantify the variance in the results.

Method

LIVI (L)
LIVI (L")
HMC

DE

KIVI
MNF

Method

LIVI (£)
LIVI (£")
HMC

DE

KIVI
MNF

Boston

2.32 £0.07
2.40£0.09
2.26 £ 0.00
3.28+1.00
2.80£0.17
3.31+0.10

Boston

-2.16 £ 0.05
-2.40 £ 0.09
—-2.20 £ 0.00
-2.41+£0.25
-2.53+£0.10
—-2.66 = (.08

Concrete

4.24 +0.17
4.62+0.13
4.27 £0.00
6.03 +0.58
470 £0.12
5.82+0.04

Concrete

-2.79 £0.11
-2.99+0.13
-2.67 £ 0.00
-3.06+0.18
-3.05 £ 0.04
-3.24 +£0.09

Energy

0.41+£0.27
0.44 £0.11
0.38 £ 0.00
2.09£0.29
0.47 £0.02
1.04 £0.01

Energy

-1.17+£0.13
-1.37+£0.11
-1.14 £ 0.00
-1.31+£0.22
—-1.30 £ 0.01
—-1.34 £ 0.07

Kin8nm

0.03 + 0.00
0.08 £0.01
0.04 £0.00
0.09 £0.00
0.08 £0.00
0.08 £0.01

Kin8nm

1.24 £ 0.04
1.15+£0.01
1.27 £0.00
1.28 + 0.02
1.16 £ 0.01
1.10+0.01

Naval

0.00 = 0.00
0.00 £0.01
0.00 = 0.00
0.00£0.00
0.00+£0.00
0.01 £0.00

Naval

6.74 £ 0.04
5.84 +0.06
7.79 £ 0.00
5.93+0.05
5.50+0.12
5.01 £0.00




JUQ TESTS ON MNIST & CIFAR1TO0

NLL on R-MNIST ECE on R-MNIST

NLL with CIFAR-10-C | " ECE with CIFAR-10-C
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Figure 4: OOD Test C2: Corrupted CIFAR10 benchmark. OOD performance for methods
trained on CIFAR10 and making predictions for CIFAR-10-C 1mages corrupted with Gaussian blur
(Hendrycks et al., 2019). LIVI performs as well or better than competitors.




SCALING TO 10s OF MILLIONS OF LATENT VARIABLES

We also tested our approach on CIFAR100, using WideResNet(28,10), that contains roughly

e

RSN

36.5 million parameters.
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CONCLUSION

We present a novel entropy approximation to scale variational inference using
implicit distributions.

We lower bound this approximation turther to make it computationally cheaper.

We upgrade the MMNN* architecture to keep the number of generator
parameters manageable.

We outpertorm state of the art uncertainty quantification approaches while
generating all the parameters of a BNN from a single generator, modelling
within layer and across-layer parametric correlations.

*Kernel Implicit Variational Inference, Shi et. al. 2018



