NEURIPS 2023 SPOTLIGHT NEW ORLEANS, USA # IMPLICIT VARIATIONAL INFERENCE FOR HIGH-DIMENSIONAL POSTERIORS Anshuk Uppal*, Kristoffer Stensbo-Smidt*, Wouter Boomsma°, Jes Frellsen* # VARIATIONAL INFERENCE FOR DEEP MODELS - A. Bayesian inference can provide excellent model generalisation and calibration to deep overparameterised models. - B. Accurate Bayesian inference is impossible for any complex NN model and hence in practice we rely on approximate inference. - C. Variational inference optimises over a chosen family of distributions to approach the true posterior. - D. The efficacy of VI hinges on this choice, we propose to use a highly flexible family of distributions called implicit distributions. # IMPLICIT DISTRIBUTIONS - Easy to sample from but have no closed form density for computing log-likelihoods. - We call these networks generators or neural samplers. (Hypernetworks) ### CHALLENGES 1. For VI we need to measure a KL which is not trivial with implicit distributions. $$\begin{array}{ll} \mathsf{DEF}^{\mathsf{n}} \\ \mathsf{VARIATIONAL} \\ \mathsf{APPROX.} \end{array} \qquad q_{\boldsymbol{\gamma}}(\boldsymbol{\theta}) = \int q_{\boldsymbol{\gamma}}(\boldsymbol{\theta} \,|\, \boldsymbol{z}) q(\boldsymbol{z}) \, \mathrm{d}\boldsymbol{z} = \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z})}[q_{\boldsymbol{\gamma}}(\boldsymbol{\theta} \,|\, \boldsymbol{z})], \quad \text{where,} \\ q_{\boldsymbol{\gamma}}(\boldsymbol{\theta} \,|\, \boldsymbol{z}) = \mathcal{N}(\boldsymbol{\theta} \,|\, \boldsymbol{g}_{\boldsymbol{\gamma}}(\boldsymbol{z}), \sigma^2 \boldsymbol{I}_m), \quad g_{\boldsymbol{\gamma}} : \mathbb{R}^d \to \mathbb{R}^m, \\ \mathsf{Generator} \end{array}$$ 2. Cannot evaluate entropy of an implicit distribution. $$\textbf{ELBO: } \mathcal{L}(\gamma) = \mathbb{E}_{q_{\gamma}(\theta)} \big[\log p(\theta, \mathcal{D})\big] - \mathbb{E}_{q_{\gamma}(\theta)} \big[\log q_{\gamma}(\theta)\big]$$ $$\textbf{Entropy}$$ 3. Cannot evaluate gradients (w.r.t γ) of this unavailable entropy. ### APPROXIMATING ENTROPY VIA LINEARISATION $$q_{m{\gamma}}(m{ heta}) = \int q_{m{\gamma}}(m{ heta} \, | \, m{z}) \, q(m{z}) \, \mathrm{d}m{z} = \mathbb{E}_{m{z} \sim q(m{z})}[q_{m{\gamma}}(m{ heta} \, | \, m{z})],$$ Non-conjugate $q_{m{\gamma}}(m{ heta} \, | \, m{z}) = \mathcal{N}(m{ heta} \, | \, m{g}_{m{\gamma}}(m{z}) \, | \, m{\sigma}^2 m{I}_m), \quad g_{m{\gamma}}: \mathbb{R}^d ightarrow \mathbb{R}^m,$ Non-linear • Linearise the g about its input using Taylor series $\longrightarrow g_{\gamma}(z) \approx g_{\gamma}(z') + J_g(z') \ (z-z') \coloneqq T_{z'}^1(z)$ $$q_{\gamma}(\boldsymbol{\theta} \mid \boldsymbol{z}) \approx \tilde{q}_{\boldsymbol{z}'}(\boldsymbol{\theta} \mid \boldsymbol{z}) = \mathcal{N}(\boldsymbol{\theta} \mid T_{\boldsymbol{z}'}^{1}(\boldsymbol{z}), \sigma^{2} \boldsymbol{I}_{m})$$ $\mathsf{TRACTABLE:} \quad q_{\boldsymbol{\gamma}}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z})}[q_{\boldsymbol{\gamma}}(\boldsymbol{\theta} \,|\, \boldsymbol{z})] \approx \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z})}[\tilde{q}_{\boldsymbol{z}'}(\boldsymbol{\theta} \,|\, \boldsymbol{z})]$ ## APPROXIMATE ELBO AND SCALABILITY $$\begin{array}{l} \mathsf{APPROX.} \\ \mathsf{ENTROPY} \end{array} \quad H[q_{\boldsymbol{\gamma}}(\boldsymbol{\theta})] \approx \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z})} \left[\log \det \left(\boldsymbol{J}_g(\boldsymbol{z}) \boldsymbol{J}_g(\boldsymbol{z})^\intercal + \sigma^2 \boldsymbol{I}_m \right) \right] + \frac{m}{2} + \frac{m}{2} \log 2\pi \end{array}$$ Jacobians and their log determinant are very expensive, so can further derive a lower bound using fundamental LA theorems. If $s_d(z) \geq \ldots \geq s_1(z)$ are the non-zero singular values of the Jacobian $J_q(z)$ $$\frac{1}{2}\log\det(\boldsymbol{J}_g(\boldsymbol{z})\boldsymbol{J}_g(\boldsymbol{z})^{\mathsf{T}} + \sigma^2\boldsymbol{I}_m) = \frac{1}{2}\sum_{i=1}^d\log(s_i^2(\boldsymbol{z}) + \sigma^2) + \frac{m-d}{2}\log\sigma^2$$ $$\frac{1}{2} \sum_{i=1}^{d} \log(s_i^2(z) + \sigma^2) + \frac{m-d}{2} \log \sigma^2 \ge \frac{d}{2} \log(s_1^2(z) + \sigma^2) + \frac{m-d}{2} \log \sigma^2$$ Scalable Entropy approximation # TESTING THE VARIATIONAL APPROXIMATION - We test our variational approximation using deep BNNs as they contain millions of global latent variables. - In UCI regression benchmarks we compare our posterior quality with HMC, and we compare within the two entropy approximations. Table F.1: **UCI regression datasets.** We report RMSE (\downarrow) on the test set and average across three different seeds for each model to quantify the variance in the results. | Method | Boston | Concrete | Energy | Kin8nm | Naval | |---|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------| | LIVI (\mathcal{L}')
LIVI (\mathcal{L}'') | 2.32 ± 0.07
2.40 ± 0.09 | 4.24 ± 0.17
4.62 ± 0.13 | 0.41 ± 0.27 0.44 ± 0.11 | 0.03 ± 0.00
0.08 ± 0.01 | 0.00 ± 0.00
0.00 ± 0.01 | | HMC | 2.26 ± 0.00 | 4.27 ± 0.00 | 0.38 ± 0.00 | 0.04 ± 0.00 | 0.00 ± 0.00 | | DE
KIVI | 3.28 ± 1.00
2.80 ± 0.17 | 6.03 ± 0.58
4.70 ± 0.12 | 2.09 ± 0.29
0.47 ± 0.02 | 0.09 ± 0.00
0.08 ± 0.00 | 0.00 ± 0.00
0.00 ± 0.00 | | MNF | 3.31 ± 0.10 | 5.82 ± 0.04 | 1.04 ± 0.01 | 0.08 ± 0.01 | 0.01 ± 0.00 | Table F.2: **UCI regression datasets.** We report log-likelihood (\uparrow) on the test set and average across three different seeds for each model to quantify the variance in the results. | Method | Boston | Concrete | Energy | Kin8nm | Naval | |------------------------|------------------|------------------|------------------|-----------------|-----------------| | LIVI (\mathcal{L}') | -2.16 ± 0.05 | -2.79 ± 0.11 | -1.17 ± 0.13 | 1.24 ± 0.04 | 6.74 ± 0.04 | | LIVI (\mathcal{L}'') | -2.40 ± 0.09 | -2.99 ± 0.13 | -1.37 ± 0.11 | 1.15 ± 0.01 | 5.84 ± 0.06 | | HMC | -2.20 ± 0.00 | -2.67 ± 0.00 | -1.14 ± 0.00 | 1.27 ± 0.00 | 7.79 ± 0.00 | | DE | -2.41 ± 0.25 | -3.06 ± 0.18 | -1.31 ± 0.22 | 1.28 ± 0.02 | 5.93 ± 0.05 | | KIVI | -2.53 ± 0.10 | -3.05 ± 0.04 | -1.30 ± 0.01 | 1.16 ± 0.01 | 5.50 ± 0.12 | | MNF | -2.66 ± 0.08 | -3.24 ± 0.09 | -1.34 ± 0.07 | 1.10 ± 0.01 | 5.01 ± 0.00 | # UQ TESTS ON MNIST & CIFAR10 Figure 4: **OOD Test C2: Corrupted CIFAR10 benchmark.** OOD performance for methods trained on CIFAR10 and making predictions for CIFAR-10-C images corrupted with Gaussian blur (Hendrycks et al., 2019). LIVI performs as well or better than competitors. ## SCALING TO 10s OF MILLIONS OF LATENT VARIABLES We also tested our approach on CIFAR100, using WideResNet(28,10), that contains roughly 36.5 million parameters. # CONCLUSION - We present a novel entropy approximation to scale variational inference using implicit distributions. - We lower bound this approximation further to make it computationally cheaper. - We upgrade the MMNN* architecture to keep the number of generator parameters manageable. - We outperform state of the art uncertainty quantification approaches while generating all the parameters of a BNN from a single generator, modelling within layer and across-layer parametric correlations. ^{*}Kernel Implicit Variational Inference, Shi et. al. 2018