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Off-Policy RL for Improving Sample-Efficiency
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Loss of Plasticity in Off-Policy RL
Definition

The model overfits to earlier data and loses its ability to adapt to new datasets.

Two types of the model’s plasticity
 Input plasticity: adaptability to shifts in input distribution, p(x).
 Label plasticity: adaptability to shifts in label for given inputs, p(y|x).

Why multiple updates lead to the loss of plasticity?

« The model converges on a sharp region of loss surface, which is sensitive to input shift.

« The number of active units decreases, which impedes updates to label shift.
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How to preserve the model’s plasticity?

e Input plasticity: Seek smooth region of loss surface with LayerNorm / SAM optimizer.
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PLASTIC: Jointly Preserving Input & Label Plasticity

How to preserve the model’s plasticity?

e Input plasticity: Seek smooth region of loss surface with LayerNorm / SAM optimizer.

« Label plasticity: Preserve the active units with CReLU activation / Last-layer Reset.

« PLASTIC = Integrating (LN / SAM) with (CReLU / Reset) to Off-policy RL algorithm.
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Wtrain Wtest Werain Weest ~ Weight

Seeking smoother region of loss landscape facilitates
stability to input shift, improving the input plasticity.
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Preserving the fraction of active units facilitates
gradient propagation, improving the label plasticity.
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e Synthetic: CIFAR-10 dataset with 100 input / label distribution shifts.
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Experiments

Setup
e Synthetic: CIFAR-10 dataset with 100 input / label distribution shifts.
« Atari-100k: 26 Atari games with 100k interactions. Use Rainbow algorithm.

« DMC-Medium: 11 medium level control tasks with 2M interactions. Use SAC algorithm.

Result
Synthetic Experiment RL Benchmarks
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Experiments
Setup

e Scaling: Increasing the Replay Ratio (# of updates per data collection) in Atari-100k.
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Experiments

Setup
e Scaling: Increasing the Replay Ratio (# of updates per data collection) in Atari-100k.

e Pretrained: Fine-tuning on Atari-100k, using a large, pre-trained model.
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Take-Home Messages

1. In off-policy RL, increasing the replay ratio often lead to the loss of plasticity.
2. The loss of plasticity can be categorized by loss of input and label plasticity.
« Seeking a smooth region of loss surface improves the input plasticity.
 Preserving a fraction of active units improves the label plasticity.

3. By jointly improving both plasticity, we can make sample-efficient RL algorithm!

See you at Poster Session #4! (Dec 13 Wed)
e Poster location: Great Hall & Hall B1+B2 #1422
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