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Off-Policy RL for Improving Sample-Efficiency

Problem: Loss of Plasticity.
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Loss of Plasticity in Off-Policy RL
Definition
The model overfits to earlier data and loses its ability to adapt to new datasets.
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Why multiple updates lead to the loss of plasticity?
• The model converges on a sharp region of loss surface, which is sensitive to input shift.

• The number of active units decreases, which impedes updates to label shift. 



PLASTIC: Jointly Preserving Input & Label Plasticity 
How to preserve the model’s plasticity?
• Input plasticity: Seek smooth region of loss surface with LayerNorm / SAM optimizer.

• Label plasticity: Preserve the active units with CReLU activation / Last-layer Reset.

• PLASTIC = Integrating (LN / SAM) with (CReLU / Reset) to Off-policy RL algorithm.

Loss
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Seeking smoother region of loss landscape facilitates 
stability to input shift, improving the input plasticity.
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Experiments
Setup
• Synthetic: CIFAR-10 dataset with 100 input / label distribution shifts.

• Atari-100k:  26 Atari games with 100k interactions. Use Rainbow algorithm.

• DMC-Medium: 11 medium level control tasks with 2M interactions. Use SAC algorithm. 

Result
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Take-Home Messages
1. In off-policy RL, increasing the replay ratio often lead to the loss of plasticity.

2. The loss of plasticity can be categorized by loss of input and label plasticity.

• Seeking a smooth region of loss surface improves the input plasticity.

• Preserving a fraction of active units improves the label plasticity.

3. By jointly improving both plasticity, we can make sample-efficient RL algorithm!
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