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Goal of research

® Dataset cleaning: Identifying problematic data
— ldentifying problems regarding labels or input data

— Developing domain-agnostic and scalable methods for label error and
outlier detection

® Data analysis: Characterizing data points

— Answering "Why does the model make such predictions?” from a
data perspective

— Building a more reliable evaluation system



Conventional approach
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e Conventional approach for identifying problematic data is to
measure an unary score for each data:
— prediction margin®
— self-influence®
— sensitivity®

INorthcutt et al., Confident learning: Estimating uncertainty in dataset labels, 2021

2Koh et al., Understanding black-box predictions via influence functions, 2017

3Liang et al., Enhancing the reliability of out-of-distribution image detection in neural
networks, 2018



Proposed approach
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® Outlier
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Dataset Relation graph

® We propose a unified approach for detecting label noise and outlier
data by utilizing relational structure of data.



Assumption

® Noisy training dataset 7 = {(z;,y;) | i =1,...,n}.
— May have problems in z; (outlier) or y; (label error).

® Trained neural networks on 7.
— Extract feature representation f;.

— Measure the semantic similarity k£ : X x X — [0, M| between data
(higher means more similarity).



Data relation
® Given data (z;,y;) and (z;,y;), we define relation between data:
(@i yi), (25,95)) = Wy = ;) - k2, 25).
Here, 1(y; = y;) € {—1,1}.

® Similar to the influence function, data relation quantifies the
complementarity of a data pair.

Lesser panda




Label error detection

® Goal: Measure the label noisiness score s € R™ for dataset

T=A{1,...,n}.

— A higher score indicates a higher likelihood of label error.



Label error detection

® Goal: Measure the label noisiness score s € R™ for dataset

T=A{1,...,n}.

— A higher score indicates a higher likelihood of label error.

® We consider a fully-connected undirected graph G = (V,E, W).
— Nodeset V="T.

— Weights W on edges £ are the negative relation values:

w(i, j) = =r(i,j) = =r((zi, 9i), (25, y5))-



Label error detection

® Simple approach: Aggregate edge weights as s[i] = Z;’Zl w(t, ).

= Edge values can affect both the clean and unclean data.



Label error detection

® Simple approach: Aggregate edge weights as s[i] = Z;’Zl w(t, ).

= Edge values can affect both the clean and unclean data.

® We jointly estimate the noisy subset A/ C 7 that are likely to have
incorrect labels:

N* =argmax cut(N, T\ N)( = w(i, j)) — AN
NCT ( i%\:fje;/\f )

= Max-cut problem, which is NP-hard.



Label error detection

® Motivated by Kerninghan-Lin algorithm, we alternatively update s

and NV:

sl = > w(ig)— > w(i,j)

JET\NV JEN
N ={i|s[i]>Nie[l,...,n]}.

Calculate label noisiness score s
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OOD/outlier detection

Outlier score calculation

JCXX XXX

k(z, ;)

® We measure the outlier score (higher scores indicate greater
outlierness) of a data point x as

1
Zies k(x,xl)

outlier(x) =

® Here, S is a random subset of 7.

— Reflect global characteristics of data distribution.

— Only 1% is enough in the case of ImageNet.
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Kernel function

® We propose the following class of bounded kernel:

k(xhxj) = ls(f’mfj) ! C(pi7pj)|t7

where hyperparameter ¢ > 0 controls the kernel distribution's
sharpness.
— Feature similarity: s(f;, f;) = max(0, cos(f;, f;))

— Prediction compatibility: ¢(pi, p;) = P(¥i = J;) = P, P

® Qur framework demonstrates strong performance across various
kernel types, including RBF kernels.
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Experiment results: Label error detection

® An MAE-Large model on ImageNet with synthetic label noise.
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Experiment results: Label error detection

® Detected data samples with label errors from ImageNet and SST2
(text sentiment classification).
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Experiment results: OOD detection

® An MAE-Large model on ImageNet validation set with various OOD

datasets.
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Experiment results: Outliers in validation set

® Detected outlier validation samples from ImageNet (top) and SST2
(bottom).

Flute Honeycomb

Positive Positive Negative

“leather pants" “give a backbone to the company" “the israeli/palestinian conflict as"

15



Summary

® We propose a unified approach for identifying label errors and outlier
data points.

® \We develop domain-agnostic and scalable detection algorithms.

® https://github.com/snu-mllab/Neural-Relation-Graph
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