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Motivation — Partial identification

Genes (unobserved)

Smoking Lung cancer
Point identification Partial identification
- Causal effect is identifiable - Causal effect is bounded
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Motivation — Sensitivity analysis

Genes (unobserved)

Sensitivity
model

Smoking Lung cancer

 Large effect from smoking on lung cancer in the observational data
» Can the effect be fully explained by unobserved confounders (genes)?

« Cornfield (1959)': No! To fully explain away the observed effect, the genes would
need to have an implausibly large effect on smoking.

1. J. Cornfield et al., Smoking and lung cancer: Recent evidence and a discussion of some questions. J. Nat. Cancer. Inst. 22. 173-203 (1959)



Existing work & our contributions

» Existing works derive (often closed-form) bounds for the marginal sensitivity
model (MSM)

* Most existing methods only work for (conditional) average treatment effects
and binary treatments

« We propose a novel approach to causal sensitivity analysis
* Interpretation of the bounding problem via probability mass transport

« Sharp bounds for a variety of causal queries and treatment types: CATE, dose-
response function, distributional effects, mediation/ path analysis

‘ Unified approach to causal sensitivity analysis under MSM



Basic idea
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Bounding as probability mass transport
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MSM bounds in more general settings

 Basic idea extends to more general settings (details in
paper):
* Observed confounders
* (Multiple) discrete mediators
* Arbitrary (multidimensional) unobserved confounders

* For binary treatments and (conditional) average treatment
effects, we obtain the same bounds as Dorn and Guo
(2023)2

* They proved optimality by applying the Neyman-Pearson
Lemma from statistical testing theory

2. J. Dorn and K. Guo, Sharp sensitivity analysis for inverse propensity weighting via quantile balancing. Journal of the American Statistical Association (2023)

Algorithm 1: Causal sensitivity analysis with mediators

Input : Causal query Q{x, a), GMSM & with bounds -sj; and s,
Output: Upper bound Q71 (x, a, 8)
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Experimental results: synthetic data
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Results on real-world data: Covid-19 pandemic in Switzerland

Canton

)

\, Mobility

4
’
s
’
’

!

Stay-at-

A ey
order "

Infection
rate

Effect size

Average natural direct effect




LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Link to paper

Dennis Frauen
Institute of Al in Management
frauen@Imu.de




	Sharp Bounds for Generalized Causal Sensitivity Analysis�
	Motivation – Partial identification
	Motivation – Sensitivity analysis
	Existing work & our contributions
	Basic idea
	Bounding as probability mass transport
	MSM bounds in more general settings
	Experimental results: synthetic data
	Results on real-world data: Covid-19 pandemic in Switzerland
	Slide Number 10

