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Is Learning in Games Good for the Learners?

Setting: 

• 2-player general-sum games , 
played for  rounds.


Many prior works asking:


• How fast do learning algorithms converge to 
(coarse) correlated equilibria?


• How do (coarse) correlated equilibria 
compare to optimal welfare for specific 
classes of games?


G = (A, B)
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Questions we address: 

• Is it actually good for agents (in terms of 
welfare) to run a no-(swap)-regret algorithm 
against a no-(swap)-regret opponent?


• How does the answer depend on the details 
of the opponent’s algorithm?


• How does the answer depend on structural 
properties of the game?


• How does the strategy change if the game 
is initially known vs. unknown?




Generalized -Equilibria(ΦA, ΦB)
We consider “generalized equilibria” with asymmetric 
regret constraints  and  for players  and .


• Focus: “linear” constraints , which includes 
internal , external , and unconstrained 


• Generalizes CE, CCE, etc.


Motivation:


• Each pair of regret constraints  for a game 
 corresponds to a polytope; 


• For any fixed game , we can compute upper and 
lower utility bounds for each player, knowing only 
their regret constraints.
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Theorem 1: 

For any -equilibrium  in a game , there 
exists a pair of algorithms  such that:


•   and  converge to  when played together;


•  and  are no- -regret and no- -regret, 
respectively, against arbitrary adversaries.
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We use this result to analyze reward-regret 
tradeoffs by comparing best-case/worst-case 
utility for a player under different regret pairs.




Generalized -Equilibria(ΦA, ΦB)

Example sets of generalized equilibria:


• All (coarse) correlated equilibria


• All joint strategy profile distributions


• All possible convergent profile distributions 
against a no-(internal)-regret learner
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Results via Generalized Equilibria

Some of our results:


• The optimal -equilibrium for Player  
matches the Stackelberg value of a game, which is 
attainable against a no-internal/no-swap learner;


• We tightly characterize when some (+ all) pairs of 
no-swap algorithms form a Nash equilibrium for the 
“metagame” (where players choose algorithms);


• In “almost all” games without a pure Nash 
equilibrium (w.r.t. measure), the Stackelberg value 
beats the best correlated equilibrium;


• There is an LP which characterizes the best reward 
attainable against “mean-based” learners, which 
can be worse than the best -equilibrium
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Takeaways: 

• The Stackelberg value is always attainable 
against a no- -regret learner (by playing 
the Stackelberg strategy);


• The Stackelberg value is often optimal and 
strictly better than all (coarse) correlated 
equilibria, and can only be improved if more 
is known about the opponent’s algorithm.
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Learning Stackelberg with a No-Regret Opponent 

The Stackelberg strategy is easy to compute 
and implement if the game is known. But what 
if we don’t know our opponent’s reward 
function?


• We give reductions from “best response 
query” offline algorithms to adaptive 
strategies against no-regret opponents 


• Key idea: if we play a mixed strategy for 
long enough, a no-regret opponent will 
eventually best-respond


Theorem: 

If the Stackelberg equilibrium  for a game  is 
learnable with  best-response queries, then: 


•  is learnable in  rounds against any 
no-regret learner


•  is learnable in  rounds against any 
dynamic/adaptive-regret learner


• There are “mean-based” learners where 
 are required to learn 
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