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Extreme multi-label classification (XMLC)

Multi-label classification:

x ∈ X −→ y ∈ Y := {0, 1}m

Extreme multi-label classification:
• a large number of labels m (≥ 105),
• a label vector y is very sparse, ∥y∥1 ≪ m,
• many problems are naturally budgeted at k

(requirement for a prediction ŷ: ∥ŷ∥1 = k),
• long-tail distribution of labels.

e.g.:
y1 y2 y3 . . . ym

y = 0 1 1 . . . 0
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• long-tail distribution of labels.



Extreme multi-label classification (XMLC)

Multi-label classification:

x ∈ X −→ y ∈ Y := {0, 1}m

Extreme multi-label classification:
• a large number of labels m (≥ 105),
• a label vector y is very sparse, ∥y∥1 ≪ m,
• many problems are naturally budgeted at k

(requirement for a prediction ŷ: ∥ŷ∥1 = k),
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Problem with long tail and common metrics budgeted at k

Standard instance-wise metrics, e.g.:

Precision@k(Y , Ŷ ) :=
1

n

n∑
i=1

1

k

m∑
j=1

yij ŷij

Table: Performance measures (%) on AmazonCat-13k of a classifier trained on the full set of labels and a
classifier trained with only 1k head (most frequent) labels.

Metric full labels head labels
@1 @3 @5 @1 (diff.) @3 (diff.) @5 (diff.)

Precision 93.03 78.51 63.74 93.08 (+0.05%) 76.42 (-2.66%) 58.21 (-8.67%)
nDCG 93.03 87.25 85.35 93.08 (+0.05%) 85.75 (-1.71%) 80.91 (-5.19%)
PS-Precision 49.76 62.63 70.35 49.07 (-1.39%) 57.71 (-7.84%) 57.41 (-18.40%)

Macro-Precision 13.28 32.65 44.16 4.31 (-67.54%) 5.28 (-83.82%) 4.32 (-90.21%)
Macro-Recall 1.38 11.06 30.57 0.47 (-65.61%) 2.69 (-75.71%) 4.10 (-86.59%)
Macro-F1 2.26 14.67 32.84 0.74 (-67.37%) 3.10 (-78.88%) 3.77 (-88.51%)
Coverage 15.19 40.53 60.88 5.11 (-66.32%) 7.37 (-81.82%) 7.52 (-87.65%)
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Metrics that linearly decompose over labels:

Ψ@k(Y , Ŷ ) =
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Our contributions

• We analyze the problem of optimization of general family of metrics linearly
decomposeable over labels calculated at k under expected test utility framework (ETU)

Ψ@k(Y , Ŷ ) =

m∑
j=1

ψj(y:j , ŷ:j) , Ŷ ⋆ = argmax
Ŷ ∈Yn

k

EY |X [Ψ@k(Y , Ŷ )] .

• Our framework only requires the probability estimates of individual labels for each instance
η(x) = (η1(x), . . . , ηm(x)) := Ey|x[y] −→ easy to apply on-top of existing classifiers

• We provide:
▶ optimal prediction rules,
▶ efficient approximations with guarantees,
▶ regret bounds quantifying influence of label probability estimation error,
▶ general algorithm, based on block coordinate ascent, that scales to XMLC problems.
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