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Introduction NE UW\I

e Continual learning systems often struggles with Stability-Plasticity Dilemma. !

e Existing Approaches: Parameter Isolation, Weight Regularization, and Experience
Rehearsal. 2
o Limitations: Capacity Saturation and Scalability Issues, Class Discrimination
Challenges, and Overfitting on Buffered Data.

e The human brain orchestrates CL through the dynamic interplay of neurophysiological
processes,> encompassing
o Metaplasticity o Experience replay
o Neurogenesis o Active forgetting, etc.

Hypothesis: By holistically combining these neurophysiological aspects instead of treating
them as competing methods, a more comprehensive solution can be developed to address
the stability-plasticity dilemma in continual learning.



Proposed Methodology - TriRE
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Inspired by the biological underpinnings of the CL mechanisms in the brain, we propose
‘REtain, REvise & REwind’ (TriRE), a novel CL paradigm to mitigate catastrophic forgetting.
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TriRE - Retain, Revise, Rewind }IEU l Q/ J

e Retain:

o Inspired by the brain's use of context-dependent gating for selective filtering of
neural information.

o Induces modularity by training a hyper-network and extracting a subnetwork, g,
representing the current task’s knowledge.

o Achieved through activation pruning followed by weight pruning.
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TriRE - Retain, Revise, Rewind }IEU l i)/ J

e Revise:

o Draws inspiration from biological processes such as neurogenesis and metaplasticity.
o Jointly fine-tunes the task-specific subnetwork (S;) and the cumulative subnetwork

from past tasks (.5)
o Extracted subnetwork is integrated with the cumulative mask from past tasks.
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TriRE - Retain, Revise, Rewind }IEU l i)/ J

e Rewind:

o Draws inspiration from the brain's active forgetting mechanism.

o The weights not in the cumulative subnetwork is rewound to a state where it
has learned essential features.

o These weights are then fine-tuned for a few epochs using current task data.

o This reactivates less active neurons and readies them for subsequent learning
tasks.
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Table 1: Comparison of prior methods across various CL scenarios. We provide the average top-1
(%) accuracy of all tasks after training. T Results of the single EMA model.

Experimental Results

Buffer s | Seq-CIFAR10 Seq-CIFAR100 Seq-TinyImageNet
- | Class-IL  Task-IL | Class-IL  Task-IL | Class-IL  Task-IL
) SGD 19.62+005 61.02+333 | 17.49+028 40.464+099 | 07.92+026 18.31+068
Joint 02.20+0.15 98.31+0.12 | 70.56+028 86.19+043 | 59.99+0.19 82.04+0.10
LwF 19.61+005 63.29+235 | 18.47+014 26.45+022 | 8.46+0.22 15.85+0.58
- oEWC 19.4940.12 68.29+392 - - 7.58+010 19.20+031
SI 19484017 68.0545.91 - - 6.5840.31 36.3240.13
ER 4479418 91.194094 | 21.404+022 61.36+035 | 8.57+004  38.17+2.00
DER++ 64.88+1.17 91.92+060 | 29.60+£1.14 62.49+1.02 | 10.96+1.17 40.87+1.16
CLS-ER' | 61.884243 93.59+087 | 43.38+106 72.01+097 | 17.68+165 52.60+156
200 ER-ACE | 62.08+144 92.20+057 | 35.17+117 63.09+1.23 | 11.25+054 44.17+1.02
CoL 65.57+137 93.43+078 | 31.90+038 55.02+036 | 13.88+040 42374074
GCR 64.84+163 90.8+1.05 | 33.69+140 64.24+083 | 13.05+091 42.11+1.01
DRI 65.1641.13  92.87+071 - - 17.584+124 44.2841.37
[ TriRE 68.17+033 92451018 | 43.91+018 71.66+044 | 20.14+019 55.95+078 |




Ablation Analysis
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Table 2: Comparison of the contribution of each phase in TriRE. Note that the combination of Revise
alone or Revise & Rewind has not been considered, as it is not feasible without the Retain phase.

Seq-CIFARI100

Seq-TinyImageNet

Retain ~ Revise ~ Rewind Class-IL  Task-IL

Class-IL  Task-IL

v X X 38.01 66.23 11.54 40.22

v v X 33.08 60.03 8.44 31.90

v X v 43.03 72.09 16.25 48.89
(v v v 43.91 71.66 20.14 55.95 |

Retain focuses on reducing task interference but lacks in forward transfer and

weight reuse.

Combining Retain and Revise solidifies knowledge but encounters capacity issues.
Retain and Rewind together encourage efficient knowledge delimitation but

sacrifice forward transfer.

Synergistic integration of all three stages consistently delivers the most robust

results in both datasets.



Conclusion and Future Work TIE U I 3{ \I

e TriRE is an innovative CL paradigm inspired by various neurophysiological
mechanisms in the brain.

e Each task in TriRE is divided into stages, including the retention of active neurons,
knowledge revision, and promotion of less active neurons for future tasks.

e TriRE significantly reduces task interference and outperforms individual CL methods.

e In the Seqg-TinyImageNet dataset, TriRE achieves a 14% improvement over
rehearsal-based baselines, surpasses the best parameter isolation method by 7%, and
nearly doubles the performance of the best weight regularization approach.

e Future research directions include reducing computational and memory overhead,
adapting TriRE for task-free CL with recurring classes, and leveraging intrinsic data
structures within tasks.
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