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Introduction



Background: Experimentation on Network

* AB test is widely adopted by social platform such as LinkedIn, Wechat,
to validate new features of product.

* Interference happens when people on social network interact with
each other, and the influence (on concerned metric) of treatment is
propagated along edges.

* Platform is concerned with global average treatment effect (GATE),
whose estimation is blurred by severe bias brought by interference.



Position of Our Work

* Interference type: interference conducted by social network

* Design : treatment allocation (contrasting post-treatment techniques,
such as regression adjustment)

* Regime: intensity of interference is comparable to direct treatment
effect.



Limitations of Existing Literatures

* Most existing works focus on variance reduction, while bias is also
very important, even dominate variance, as exposed in our simulation.

* There are a variety of variance bounds of different estimators, while
seldom of them can directly instruct experiment design.

* Many experiment designs are concerned with mathematical
programming (such as SDP, MILP) that scale badly for social platform.



Traits of our Optimized Covariance Design

* We're concerned with minimization of a tight MSE upper bound that
consider bias and variance in a meanwhile.

* We derive an optimizable bound on MSE under a potential outcome

model that enables covariance matrix of treatment vector to be
decision variables.

* We propose a sampling procedure and a projected gradient descent
algorithm that supports efficient optimization.



Basic Setting

* We consider binary treatment vector
< = (21,22,. . .,Zn) < {0,1}”

* The estimand is GATE
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* We consider graph cluster randomization, and cluster-level treatment
vector is

t = (tl,tg,...,tK> c {O,l}K



Basic Setting

* We consider balanced cluster-level randomization
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* We consider standard HT estimator (without exposure indicator)
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* We consider following linear potential outcome model

Yi(2) = a; + Bizi + 7 Z Zj
JEN;



Bias and Variance Analysis



Bias of HT Estimator

* Firstly, we define a core term in our methodology, which characterizes
the connections between/within clusters. Here S}, is the k-th cluster

Cij = {(u,v) : (u,v) € E,u € S;,v € S}

* Now we can present the bias of HT estimator under our model

E[f] -7 =1 (4trace(C Cov[t]) — ) _ Cij)
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* This bias formula implies
* Only connections between clusters can contribute to bias.
* Only positive correlation can reduce bias.



Variance of HT Estimator

* To derive a clean variance, we must introduce an assumption on base
level a;, which is we know all base levels in advance.

* This assumption is reasonable for social platform since they collect
concerned metrics constantly, and it remove the giant influence of «;
in variance (since a;>> [3; in such experiments)

* Based on it, we can derive the expression of variance.

Var|[7] = % (trace (hhT Cov[t]) + 4~ Cov {hTt, tTCt} + 4~4* Var [tTC'tD



Methodology



Bypass Parameter Estimation

* The expression of variance can’t be optimized directly without
knowing interference intensity y in advance.

* We introduce following comparability assumption that restricts our
scope to the scene that interference is comparable to direct
treatment effect

Assumption 3 (Comparability between Direct Treatment Effect and Interference) Given
potential outcome model in equation (6), we assume there exists a constant w > 0 such that

i) S wy()  di) (13)
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holds for each cluster k € [K].



Bypass Parameter Estimation

* Now we can construct a variance bound that depends on experiment
design only through covariance matrix of treatment vector.

* Moreover, this bound is well-crafted and allow us to bypass the
estimation on y: if we're concerned with minimize this bound, y%is a
common multiplier in squared bias and variance bound!

Proposition 3 (Variance Bound) The variance of the standard HT estimator has following upper

bound,

872 (w? +4)
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Var|7] <

trace (ddT(Cov[t] + illT)) (14)

where d is the vector (Zze Sk



Enable Sampling Following Optimized Covariance

* Before we finish the formulation of optimizing the covariance matrix,
we should guarantee two points
* The covariance matrix is legal for multi-variate Bernoulli distribution.
* We can sample treatment vector that’s subject to such covariance.

* To realize it, we introduce the Grothendieck’s identity and a
Cholesky-based parameterization, and the covariance matrix is
parameterized as

arcsin (RRT)

X(R) = 5




Optimization Issues

* Through this parameterization, the constraints is simplified significantly.

min M(R) = B(X(R))® + Vio,(X(R))

st. (RRT);; €[-1,1] Vi#3j,i,j€ K]
(RRT);; =1 Vi € [K]

* We verify that row-normalization is a projection to feasible domain, and
propose a projected gradient descent algorithm for the optimization.

* After optimization, we can sample directly from desired distribution

,_ Ltsen (RN (0, I))
B 2




Simulation Result

* Our optimized covariance design present significant improvement on
both statistical metrics (bias, variance, MSE), and computational efficiency.

Table 2: The average bias, standard deviation and MSE of HT estimator under multiplicative model

gamma 0.5 1.0 2.0

metric Bias SD MSE Bias SD MSE Bias SD MSE
method

Ber -0.365 0.348 0.255 -0.736 0.394 0.698 -1.475 0.493 2.421
CR -0.368 0.235 0.191 -0.744 0.274 0.629 -1.477 0.336 2.297
ReAR -0.402 0.178 0.194 -0.809 0.174 0.685 -1.548 0.226 2.450
PSR -0.366 0.134 0.152 -0.738 0.153 0.569 -1.479 0.192 2.227
IBR -0.369 0.155 0.161 -0.737 0.178 0.576 -1.484 0.221 2.252
IBR-p -0.368 0.163 0.163 -0.739 0.185 0.581 -1.482 0.232 2.252

OCD -0.258 0.040 0.069 -0.517 0.050 0.271 -1.034 0.054 1.073




