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Background: Multi-view stereopsis (MVS)
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Previous works in MVS

Traditional MV S Supervised MV S Semantic MV S

e Construct 3D volume e Handcraft semantic detection
* Superpixel
* Line\plane detection

 Calculate photometric consistency

* Measures on patches locally » Project 2D features to 3D
* Robust similarity function (NCC)

. . e Learning through supervision N .
* Random sampling and propagation 8 1 Stp * RANSAC primitive fitting
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Gipuma [Galliani et al. 20135] MVSNet [Yao et al. 2018] TAPAMYVS [Romanoni et al. 2019]

COLMAP [Schonberger et al 2016] Consistency [Khot et al 2019] Urban [Micusik et al 2010]

Handcraft or data-drive: susceptible to textureless patterns or geometry variations



Bottleneck

Geometric consistency Semantic segmentation

* Local region * No geometric cues:

* No shape prior * Scales, shapes and boundaries

e Lack of training data
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Our work: Bridge the gap between the two areas.



ElasticMVS

A novel elastic part representation encoding part segmentations

Input images Elastic part representation Latent space Scene space

* Geometry-aware: Encode geometric connectedness, smoothness and boundaries
 Elastically: Represent elastically-varying scales, shapes and boundaries

* Self-supervised: Learn the representation and estimate per-view depth iteratively



Problem definition

* Definition
* Geometry: Given an image x, find the best depth and normal (dp, np) on each pixel p € x.
« Segmentation: Given a set of images X, learn the segmentation I1g(x).

* Optimization goal
* Geometry: Make the photo-consistency loss as lower as possible (M;).

* Segmentation: Make the surface in each segment as smoother as possible (M).

Photo-consistency loss,

: o Surface smoothness loss
used 1n traditional MVS.

Intuively, In each segment from the segmented image,
the depth is smooth and photometric consistent



Representation & Learning

* Elastic Part Representation
* Find geometrically concentrated areas S,.

* Representation z,, in the latent feature space is close enough in these areas.

* Learning

* Compact the representation in the geometric concentrated part.
* Contrast the representation otherwise.
* Training by contrastive learning.
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Photo-consistency loss,
used in traditional MVS.

Surface smoothness loss
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Inference

* Part-aware propagation
* gather hypotheses T), from the same physical surface part. Tp = {q € R?

l2p — 2gll < mycq 2> '5}
» Use our representation to identify these parts.
* Representation z,, in the latent feature space is close enough in these areas.

e Part-aware losses

* Part-aware correspondence: check the photo & representation consistency M;(dp, ny|z, 2)
* Part smoothness loss: piecewise smoothness using L1 median loss a1, (d,,n,, | 2) Z wy |lep — eqll
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Photo-consistency loss, £ th 1

used in traditional MV, >Urace smoothness loss
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Solved using discretely sampling ————— (dgP*, ngP*) = argmin { Ms(d ny|z, z) + ag - My(dy,n; | z) }
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Elastic part Latent
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Inference:

Different strategy during propagation

Gipuma: Fixed

ACMM: Heuristic

Ours: adaptive
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(a) Standard propagation
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[Galliani et al. 2015]

[Xu. CVPR 2019]

(b) Part-aware propagation



Inference:
Detalled pipeline

Propagation ) Depth hypothesis =) Score =) Depth map
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Results on T&T

I Method | Intermediate Advanced
3 l MVSNet [47] 43.48 -
E I CasMVSNet [ 15] 56.84 31.12
UCSNet [10] 54.83 :
| PVAMVSNet [49] 54.46 "
I SurfaceNet+ [19] 49.38 -
e R-MVSNet [48] 50.55 29.55
E l Point-MVSNet [7] 48.27 -
s 33 I PatchmatchNet [39] 53.15 32.31
A Patchmatch-RL [26] 51.81 31.78
| MVSZ [11] 37.21 .
I M?VSNet [16] 37.67 -
: SurRF [51] 54.36 -
2 | JDACS [43] 45.48 -
= A1 COLMAP[34I 42.14 27.24
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Visualization
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When Gigapixel Videography
Meets Computer Vision

GIGAVIS

2D 3D

PANDA GIGAMVS

PANDA is the first gigaPixel-level humAN-centric viDeo dAtaset to Rial Wzild Large-Scale Szeres ne f 2 GigaMVS is the first gigapixel-image-based 3D reconstruction/rendering
support large-scale, long-term, and multi-object visual analysis. benchmark for ultra-large-scale real-world scenes. The gigapixel images, with
The videos in PANDA were captured by gigapixel cameras, covering 10x Higher Than Existing Benchmarks both wide field-of-view and high-resolution details, contain both Palace-scale
real-world large-scale scenes with both wide field-of-view (km2 scene structure and Relievo-scale local details. The captured scenes reach a
area level) and high resolution details (gigapixel-level/frame), with a maximum area of 32007 m', with both ground-truth point clouds and labeled
great amount of professional labels, including bounding boxes, semantics/instances.

attributes, trajectories, groups, interactions, etc. Pixel Per Frame Bounding Boxes

32007m’ Collected Scenes

https://www.gigavision.cn

6 GigaVision challenges (GigaDetection, GigaMOT, GigaTrajectory,
GigaReconstruction, GigaRendering and GigaCrowd) with lucrative awards.


https://www.gigavision.cn/

Thank you!

Welcome to our lab’s website for more works !
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