Jianfei Zhang^{1,2} Jun Bai^{1,2} Chenghua Lin³ Yanmeng Wang⁴ Wenge Rong^{1,2}

¹State Key Laboratory of Software Development Environment, Beihang University, China ²School of Computer Science and Engineering, Beihang University, China ³Department of Computer Science, University of Sheffield, United Kingdom ⁴Ping An Technology, China {zhangjf,bal_jun,w.rong}@buaa.edu.cn c.lin@sheffield.ac.uk.wangyanmeng219@pingan.com.cn

Catalogue

- -
- Catalogue

1. Background:

a. Variational Autoencoder

b. Posterior Collapse and Hole Problem

c. Existing methods

2. Methodology ackground:
a. Variational Autoencoder
b. Posterior Collapse and Hole Problem
c. Existing methods
Aethodology
a. Reqularization on the aggregated posterior di
	-
-
- b. Posterior Collapse and Hole Problem ackground:
a. Variational Autoencoder
b. Posterior Collapse and Hole Problem
c. Existing methods
Aethodology
a. Regularization on the aggregated posterior di
b. Density Gap-based regularization
C. Marginal regularization f Catalogue

1. Background:

2. Variational Autoencoder

2. Existing methods

2. Methodology

2. Mergularization on the aggregat ackground:

a. Variational Autoencoder

b. Posterior Collapse and Hole Problem

c. Existing methods

dethodology

a. Regularization on the aggregated posterior distribution — the the

b. Density Gap-based regularization

c ackground:

a. Variational Autoencoder

b. Posterior Collapse and Hole Problem

c. Existing methods

dethodology

a. Regularization on the aggregated posterior distribution

b. Density Gap-based regularization

c. Marginal ackground:

a. Variational Autoencoder

b. Posterior Collapse and Hole Problem

c. Existing methods

c. Existing methods

dethodology

a. Regularization on the aggregated posterior distribution — the theoretical su_l

c. ackground:

a. Variational Autoencoder

b. Posterior Collapse and Hole Problem

c. Existing methods

dethodology

a. Regularization on the aggregated posterior distribution

b. Density Gap-based regularization

c. Marginal Catalogue

1. Background:

2. Variational Autoencoder

2. Catational Autoencoder

2. Existing methods

2. Methodology

2. Methodology

2. Regularization on the aggregated posteri

2. Density Gap-based regularization

2. Ma ackground:

a. Variational Autoencoder

b. Posterior Collapse and Hole Problem

c. Existing methods

Aethodology

a. Regularization on the aggregated posterior di:

b. Density Gap-based regularization

c. Marginal regulari ackground:

a. Variational Autoencoder

b. Posterior Collapse and Hole Problem

c. Existing methods

Aethodology

a. Regularization on the aggregated posterior di

b. Density Gap-based regularization

c. Marginal regulariz reakground:

a. Variational Autoencoder

b. Posterior Collapse and Hole Problem

c. Existing methods

Aethodology

a. Regularization on the aggregated posterior di

b. Density Gap-based regularization

c. Marginal regulari a. Regularization on the aggregated posterior distribution ——the theoretical support and previous methods
	- -
	-
- -
	-
	-

——the design and theory of VAEs

- ——the two problems in VAEs we intend to solve
- -existing methods to solve the two problems

-the proposed PDF-oriented regularization method

——regularization over marginal distributions

where,

 $q_{\phi}(x)$: the data distribution, described by the dataset and received by the encoder ϕ $p_{\theta}(z)$: the prior distribution of latent variable z in decoder θ

 $p_{\theta}(x)$: the generative data distribution by decoder θ (or the generative likelihood)

 $\mathcal{L}_{ELBo}(\theta, \phi, x) = E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))$

Posterior Collapse:

$$
\forall x D_{KL}(q_{\phi}(\mathbf{z}|x)||p_{\theta}(\mathbf{z})) \approx 0
$$

 $\rightarrow \forall x \ p_{\theta}(z|x) \approx q_{\phi}(z|x) \approx p_{\theta}(z)$ i.e., the latent variable z contains little information of x $\blacktriangleright \forall x \ p_{\theta}(x|\mathbf{z}) = \frac{p_{\theta}(x,\mathbf{z})}{p_{\theta}(x)} \approx \frac{p_{\theta}(x,\mathbf{z})}{p_{\theta}(x|x)} = p_{\theta}(x)$ $p_{\theta}(\mathbf{z})$ $p_{\theta}(\mathbf{z}|x)$ P^{θ} $p_{\theta}(x, z) = n_{\theta}(x)$ $\frac{\partial p_{\theta}(z|x)}{\partial p_{\theta}(z|x)} = p_{\theta}(x)$ i.e., the decoder θ becomes insensitive to z i.e., the decoder degenerates to an unconditional language model (for NLG)

posterior collapse

1. Background:

c. Existing methods *intrad* $\begin{array}{ccc}\n\text{Background:} & & & \text{intractabl} \\
\text{c. Existing methods} & & & \text{intractabl} \\
\end{array}$ probabilistic $q_{\phi}(z|x)$. $q_{\phi}(x) \longrightarrow$ probabilistic $q_{\phi}(z|x) \longrightarrow$ $p_{\theta}(\mathbf{z}|\mathbf{x})$ probabilistic $p_{\theta}(x)$ decoder intractable true posterior approximate posterior $\begin{CD} \frac{\partial e \text{ true posterior}}{\partial \varphi(z|x)}\n\downarrow\n\frac{d}{d\varphi(z|x) - d\varphi(z|x)|}\n\downarrow\n\frac{d}{d\varphi(z|x)}\n\downarrow\n\end{CD} \rightarrow p_{\theta}(x)\n\begin{CD} \frac{\partial e}{\partial x} & \downarrow\n\end{CD} \rightarrow p_{\theta}(x)\n\begin{CD} \frac{\partial e}{\partial x} & \downarrow\n\end{CD}$

 $\mathcal{L}_{ELBo}(\theta, \phi, x) = E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))$

Posterior Collapse:

 $\forall x D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) \approx 0$

 \rightarrow training strategy:

Cyclic-VAEs (cyclic annealing schedule); AE pretraining;

\rightarrow semantic learning of z:

Skip-VAE (skip connection on z); BOW-VAEs (Bag-of-Word loss term on z);

 \rightarrow hard restriction on $q_{\phi}(z|x)$:

(x) approximate posterior
 $L_{ELBo}(\theta, \phi, x) = E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))$

or Collapse:
 $\forall x D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) \approx 0$

and strategy:

Cyclic-VAEs (cyclic annealing schedule); AE pretraining;

cyclic-VAEs (skip **Weakening** $D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))$ in $\mathcal{L}_{ELBo}(\theta, \phi, x)$:

 β -VAEs (smaller weight of $D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))$ in $\mathcal{L}_{ELBo}(\theta, \phi, x)$); **FB-VAEs** (hinge loss of $D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))$ in $\mathcal{L}_{ELBo}(\theta, \phi, x)$);

 $\mathcal{L}_{ELBo}(\theta, \phi, x) = E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))$

Hole Problem:

$$
q_{\boldsymbol{\phi}}(\mathbf{z}) \neq p_{\boldsymbol{\theta}}(\mathbf{z})
$$

where, $q_{\phi}(z) = E_{q_{\phi}(x)}[q_{\phi}(z|x)]$: the aggregated approximate posterior distribution \rightarrow 3z $q_{\phi}(z) \neq p_{\theta}(z)$

i.e. there exist areas (named as holes) with mismatch between density in $q_{\phi}(z)$ and $p_{\theta}(z)$ **EXECTE ANTIFY AND THE SET ASSEMUTE AND THE SET ASSEMUTE AND THE SET ASSEMBLE THE SET AND RELEVAL (A) (A) AND HERE A** $q_{\phi}(z) = E_{q_{\phi}(z|x)}[q_{\phi}(z|x)]$ **: the aggregated approximate posterior distribution

Hole Problem:

Where,**

 $\mathcal{L}_{ELBo}(\theta, \phi, x) = E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))$

Hole Problem:

$$
q_{\boldsymbol{\phi}}(\mathbf{z}) \neq p_{\boldsymbol{\theta}}(\mathbf{z})
$$

For image generation:

 \rightarrow ascribed to the limited expressivity of $p_{\theta}(z)$ ($p_{\theta}(z) = N(0, I)$ by default)

 \rightarrow tackled by increasing the flexibility of $p_{\theta}(z)$ through:

hierarchical priors, energy-based models, a mixture of encoders, etc.

For text generation:

 \rightarrow there's still little work on this, and we found that:

- 1. the vanilla VAEs (with $p_{\theta}(z) = N(0, I)$) for text generation has no hole problem;
- 2. existing methods can solve posterior collapse effectively at the cost of introducing hole problem;

2. Methodology:

a. Regularization on the aggregated po:

rethink of $\mathcal{L}_{ELBo}(\theta, \phi, x)$: Methodology:
a. Regularization on the aggregated posterior distribution
think of $\mathcal{L}_{ELBo}(\theta, \phi, x)$:
 $f_{\text{max}}(\theta, \phi, x) = F_{\text{max}}[\log p_{\text{max}}(x|x)] - p_{\text{max}}(a_{\text{max}}(x|x)||p_{\text{max}}(x))$ **Regularization on the aggregated posterior**
 rethink of $\mathcal{L}_{ELBo}(\theta, \phi, x)$:
 $\mathcal{L}_{ELBo}(\theta, \phi, x) = E_{q_{\phi}(z|x)}[\log p_{\phi}(z|x)]$

$$
\mathcal{L}_{ELBo}(\theta, \phi, x) = E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))
$$

Q1: Since $q_{\phi}(z|x)$ should not be too close to $p_{\theta}(z)$ (otherwise it will lead to posterior collapse), what should be close to $p_{\theta}(z) = E_{p_{\theta}(x)}[p_{\theta}(z|x)]$? A1: The aggregated posterior distribution $q_{\phi}(z) = E_{q_{\phi}(x)}[q_{\phi}(z|x)].$ $\begin{aligned} \text{prior distribution} \ \log p_\theta(\mathbf{x}|\mathbf{z})] - &\frac{D_{KL}(q_\phi(\mathbf{z}|\mathbf{x})||p_\theta(\mathbf{z}))}{\log p_\theta(\mathbf{z})} \ \text{(otherwise it will lead to posterior collapse)}, \ \text{and} \end{aligned}$

Q2: So, how about regularizing $q_{\phi}(z)$ towards $p_{\theta}(z)$ instead in VAEs? A2: It turns out to maximize $E_{q{}_{\bm{\phi}}(x)} \mathcal{L}_{ELBo}(\theta, \phi, x) + \mathbb{I}_{q{}_{\bm{\phi}}(\bm{n}, \bm{z})}[n, \bm{z}]$ (Hoffman et al. 2016): $E_{q_{\phi}(x)} \mathcal{L}_{ELBo}(\theta, \phi, x) + \mathbb{I}_{q_{\phi}(n, z)}[n, z] = E_{q_{\phi}(x)} E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z)||p_{\theta}(z))$ $q_{\phi}(n,z)[n,z] = E_{q_{\phi}(n,z)}[108 \frac{n}{q_{\phi}(n)q_{\phi}(z)}]$ $\phi(\boldsymbol{h}, \mathbf{Z})$ $\phi(\boldsymbol{\mu})\phi(\mathbf{z})$ where \bm{n} is the identity of datapoints in \bm{x} , i.e., $q_{\bm{\phi}}(\bm{n}=n) = \frac{1}{N}$, $(n=1,2,...,N)$ N'

effect: 1. weaken the regularization on $q_{\phi}(z|x)$; 2. ensure $q_{\phi}(z) \approx p_{\theta}(z)$.

2. Methodology:

a. Regularization on the aggregated po:

Q3: Has anyone tried "regularizing $q_{\phi}(z)$ to Methodology:
a. Regularization on the aggregated posterior distribution
3: Has anyone tried "regularizing $q_{\phi}(z)$ towards $p_{\theta}(z)$ instead in VAEs"?
3: Yes, as below: Q3: Has anyone tried "regularizing $q_{\phi}(z)$ towards $p_{\theta}(z)$ instead in VAEs"?

Methodology:

a. Regularization on the aggregated posterior dis

Q3: Has anyone tried "regularizing $q_{\phi}(z)$ towards p_{θ}

A3: Yes, as below:

AAE (Adversarial Auto-Encoder): minimize their J

WAE (Wasserstein Auto-En AAE (Adversarial Auto-Encoder): minimize their JS divergence in the framework of GAN WAE (Wasserstein Auto-Encoder): minimize the Maximum Mean Discrepancy between them i VAE_{MI} (implicit VAE + MI regularization): minimize a dual form of KL divergence between them

But all their implementations of regularization are based on merely sampling sets from $q_{\phi}(z)$ and $p_{\theta}(z)$, and lead to a kind of local optimums. $\int q_{\boldsymbol{\phi}}(\mathbf{z})$

1. a sampling set from such a $q_{\phi}(z)$ can already stimulate that from $p_{\theta}(z)$ to some degree;

Improving Variational Autoencoders with Density Gap-based Regularization 2. but such a $q_{\phi}(z)$ still have evident difference from $p_{\theta}(z)$
Intuitively, a sampling set from $q_{\phi}(z)$ can hardly be the same as that from $p_{\theta}(z)$, even when $q_{\phi}(z) = p_{\theta}(z)$

2. Methodology:
b. Density Gap-based regularization
For example,

For example,

Methodology:

\nb. Density Gap-based regularization

\nr example,

\n
$$
q_{\phi}(z|x_n) = N(\mu_n, \sigma_n^2), p_{\theta}(z) = N(0, I)
$$

2. Methodology:
b. Density Gap-based regularization
For example,

For example,

Methodology:
\nb. Density Gap-based regularization
\nr example,
\n
$$
q_{\phi}(z|x_n) = N(\mu_n, \sigma_n^2), p_{\theta}(z) = N(0, I)
$$

Improving Variational Autoencoders with Density Gap-based Regularization 2. but such a $q_{\phi}(z)$ still have evident difference from $p_{\theta}(z)$
Intuitively, a sampling set from $q_{\phi}(z)$ can hardly be the same as that from $p_{\theta}(z)$, even when $q_{\phi}(z) = p_{\theta}(z)$

- -

2. Methodology:

b. Density Gap-based regularization

Intuitively, a sampling set from $q_{\phi}(z)$ can h Methodology:
b. Density Gap-based regularization
:uitively, a sampling set from $q_{\phi}(\mathbf{z})$ can hardly be the same a Intuitively, a sampling set from $q_{\phi}(z)$ can hardly be the same as that from $p_{\theta}(z)$, even when $q_{\phi}(z)$ = $p_{\theta}(\mathbf{z})$

 \rightarrow The probability density of $q_{\phi}(z)$ and $p_{\theta}(z)$ are the same everywhere when $q_{\phi}(z) = p_{\theta}(z)$ **→ Density Gap-based regularization:**

2. Methodology:
b. Density Gap-based regularization
For example,

For example,

Methodology:

\nb. Density Gap-based regularization

\nr example,

\n
$$
q_{\phi}(z|x_n) = N(\mu_n, \sigma_n^2), p_{\theta}(z) = N(0, I)
$$

2. Methodology:

c. Marginal regularization for more Mut

We can apply the proposed regularization Methodology:
c. Marginal regularization for more Mutual Information
e can apply the proposed regularization in training with mini-batch gradient de
 $E_{q_{ab}(x)}\mathcal{L}_{ELBo}(\theta, \phi, x) + \mathbb{I}_{q_{ab}(n, z)}[n, z] = E_{q_{ab}(x)}E_{q_{ab}(z|x)}[\log p_{\theta}(x|$ We can apply the proposed regularization in training with mini-batch gradient descent: $E_{q_{\phi}(x)} \mathcal{L}_{ELBo}(\theta, \phi, x) + \mathbb{I}_{q_{\phi}(n, z)}[n, z] = E_{q_{\phi}(x)} E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z)||p_{\theta}(z))$ where the data distribution $q_{\phi}(x)$ is described by the current mini-batch B:

$$
B = \{x_1, x_2, ..., x_{|B|}\}\
$$

$$
q_{\phi}(\mathbf{x} = x_n) = q_{\phi}(n) = \frac{1}{|B|}
$$

 \rightarrow the mutual information term to maximize has a limited upper bound:

$$
\mathbb{I}_{q_{\boldsymbol{\phi}}(\boldsymbol{n},\boldsymbol{z})}[\boldsymbol{n},\boldsymbol{z}] = H_{q_{\boldsymbol{\phi}}(\boldsymbol{n})}(\boldsymbol{n}) - H_{q_{\boldsymbol{\phi}}(\boldsymbol{n},\boldsymbol{z})}(\boldsymbol{n}|\boldsymbol{z}) \leq H_{q_{\boldsymbol{\phi}}(\boldsymbol{n})}(\boldsymbol{n}) = \log|B| < \log N
$$

For a high dimensional prior distribution, it still have limited effect on solving posterior collapse $\hat{P}_{a,\phi}(x)$, $\hat{P}_{a,\phi}(x)$, (it is already enough for $\mathbb{I}_{q_{\bm{\phi}}(\bm{n},\bm{z})}[\bm{n},\bm{z}]$ to reach $\log |B|$ with limited dimensions of \bm{z} being activated) \rightarrow in order to activate all dimensions of z, we propose marginal regularization:

 $q_{\phi}(x)$ LELBo (σ, ϕ, x) + $\left\{ \right.$ $\mathbb{I}_{q_{\phi}(n,z_i)}[n, z_i] = E_{q_{\phi}(x)}E_{q_{\phi}(z|x)}[log \rho_{\theta}(x)]$ Dim and $\sum_{i=1}^n r_i$ a $\mathcal{L}_{i=1}$ $\mathbb{I}_{q_{\phi}(n,z_i)}[\boldsymbol{\mu},\mathbf{z}_i] = E_{q_{\phi}(x)}E_{q_{\phi}(z|x)}[\log p_{\theta}(\mathbf{x}|z)] - \sum_{i=1}^{\infty} \frac{D_{KL}(q_{\phi}(z_i))}{\log p_{\theta}(z_i)}$ Dim and $\sum_{i=1}^n r_i$ a $i=1$ where $i = 1, 2, ..., Dim$ denotes the index of dimension, z_i denotes the ith component of z , $q_{\phi}(z_i)$ and $p_{\theta}(z_i)$ denote the marginal distribution of $q_{\phi}(z)$ and $p_{\theta}(z)$ on the i^{th} dimension respectively.

2. Methodology:

c. Marginal regularization for more Mut

→ in order to activate all dimensions of *z*, **v** Methodology:

c. Marginal regularization for more Mutual Information

in order to activate all dimensions of z, we propose marginal regularization:
 $\int_{0}^{R} e^{-(\theta + \mu)} \sqrt{\sum_{n=0}^{D} [n-1] \cdot F_n} d\mu$ \rightarrow in order to activate all dimensions of z, we propose marginal regularization:

 $q_{\phi}(x)$ \sim ELBo (σ, ϕ, x) + \sim $\frac{q_{\phi}(n, z_i)}{n}$ $\frac{q_{\phi}(n, z_i)}{n}$ $\frac{m}{2}$ $\frac{z_i}{n}$ - $\frac{c_{q_{\phi}(x)}c_{q_{\phi}(z)}x_i}{n}$ Dim and $\sum_{i=1}^n r_i$ a $\lim_{i=1} \frac{\mathbb{I}_{q_{\phi}(n,z_i)}[n,z_i]}{z_i - z_{q_{\phi}(x)}z_{q_{\phi}(z|x)}[log \rho_{\theta}(x|z)]} = \sum_{i=1} \frac{D_{KL}(q_{\phi}(z_i))}{z_i - z_{q}}$ Dim and $\sum_{i=1}^n r_i$ a $i=1$

where $i = 1, 2, ..., Dim$ denotes the index of dimension, z_i denotes the ith component of z , $q_{\phi}(z_i)$ and $p_{\theta}(z_i)$ denote the marginal distribution of $q_{\phi}(z)$ and $p_{\theta}(z)$ on the i^{th} dimension respectively. in such way, the mutual information term to activate all dimensions of z, we propose marginal regularization:
 $E_{q_{\phi}(x)} L_{ELBo}(\theta, \phi, x) + \sum_{i=1}^{Dim} \mathbb{I}_{q_{\phi}(n,z_i)}[n, z_i] = E_{q_{\phi}(x)} E_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - \sum_{i=1}^{Dim} D_{KL}(q_{\phi$

$$
\sum_{i=1}^{Dim} \mathbb{I}_{q_{\phi}(\boldsymbol{n},\boldsymbol{z}_i)}[\boldsymbol{n},\boldsymbol{z}_i] \le \sum_{i=1}^{Dim} H_{q_{\phi}(\boldsymbol{n})}(\boldsymbol{n}) = Dim * \log |B|
$$

We implement this for VAEs with $p_{\theta}(\mathbf{z}) = N(\mathbf{0}, \mathbf{I})$, as its marginal distributions are independent: Dim and $\sum_{i=1}^{n}$ and $\sum_{i=1}^{$

$$
p_{\theta}(\mathbf{z}) = \prod_{i=1}^{Dim} p_{\theta}(\mathbf{z}_i)
$$

 \rightarrow it should be noted that, this independency-based decomposition of $p_{\theta}(z)$ is not established for von Mises-Fisher distributions, e.g., $p_{\theta}(z) = \nu M F(\mu, \kappa)$, so we only implement the joint regularization for von Mises-Fisher distribution-based VAEs.

2. Methodology:

d. Aggregation size for ablation

→ to further investigate the effect of maxin Methodology:
d. Aggregation size for ablation
to further investigate the effect of maximizing mutual i
n-overlapping subsets: \rightarrow to further investigate the effect of maximizing mutual information, we split the mini-batch B into non-overlapping subsets:

$$
B = \bigcup_{i=1}^{C} b_i
$$
, s.t. $b_i \cap b_j = \emptyset$ iff $i \neq j$

those subsets have the same size $|b|=|b_i|=|b_j|=\frac{|B|}{C}$ which we refer to as the aggregation size, as we only calculate the aggregated posterior distributions inside each subsets, and regularize them to the prior distribution respectively:

$$
q_{\phi,j}(\mathbf{z}) = E_{x \sim b_j} [q_{\phi}(\mathbf{z}|\mathbf{x})]
$$

$$
\sum_{j=1}^{C} \sum_{i=1}^{Dim} D_{KL}(q_{\phi,j}(\mathbf{z})||p_{\theta}(\mathbf{z}_i))
$$

 \rightarrow in such way, the maximized mutual information term has an upper bound linear with $\log |b|$:

$$
\sum_{j=1}^{C} \sum_{i=1}^{Dim} \mathbb{I}_{q_{\phi,j}(\mathbf{n},\mathbf{z}_i)}[\mathbf{n},\mathbf{z}_i] \le \sum_{j=1}^{C} \sum_{i=1}^{Dim} H_{q_{\phi,j}(\mathbf{n})}(\mathbf{n}) = C * Dim * \log |b|
$$

when $|b| = 1$, the proposed method is equivalent to the vanilla VAE.

3. Experiment
a. Language modeling Experiment

Experiment

Experiment

Experiment

All a consider the set of Language Modeling on Yaboo dataset. We hold up $MI(\phi) > 0.0$

Dataset	Train	Valid	Test	Vocab size	Length (avg \pm std)
Yelp	100,000	10,000	10,000	19997	98.01 ± 48.86
Yahoo	100,000	10,000	10,000	20001	80.76 ± 46.21
Short-Yelp	100,000	10.000	10,000	8411	10.96 ± 3.60
SNLI	100,000	10.000	10,000	9990	11.73 ± 4.33

 $CU(\phi) \ge 30$, the highest $priorLL(\theta)$ and $postLL(\theta, \phi)$ for the same methods.

Models	$priorLL(\theta)$	$postLL(\theta, \phi)$	$KL(\phi)$	$MI(\boldsymbol{\phi})$	$AU(\phi)$	$CU(\phi)$
VAE (default)	-330.7	-330.7	0.0	0.0	$\mathbf{0}$	32
cyclic-VAE	-329.8	-328.9	$1.1\,$	1.0	$\overline{2}$	31
bow-VAE	-330.5	-330.5	0.0	0.0	$\bf{0}$	32
skip-VAE	-330.1	-325.2	5.0	4.3	8	31
δ -VAE (0.15)	-330.5	-330.6	4.8	0.0	$\bf{0}$	$\mathbf{0}$
$BN-VAE(0.6)$	-327.6	-321.1	6.6	5.9	32	32
$BN-VAE(1.2)$	-330.9	-310.1	26.2	9.2	32	$\mathbf{0}$
$BN-VAE(1.8)$	-343.5	-308.6	51.3	9.2	32	$\mathbf{0}$
$FB-VAE(4)$	-329.8	-328.4	3.9	1.8	32	32
$FB-VAE(16)$	-325.7	-320.8	16.1	8.5	32	8
$FB-VAE(49)$	-344.6	-296.1	50.0	9.2	32	$\bf{0}$
β -VAE(0.4)	-330.8	-324.8	7.0	6.7	3	31
β -VAE(0.2)	-338.6	-310.3	30.1	9.2	22	25
β -VAE (0.1)	-369.9	-289.6	83.7	9.2	32	θ
$DG\text{-VAE}$ ($ b =1$)	-330.7	-330.7	0.0	0.0	$\mathbf{0}$	32
DG-VAE $(b = 4)$	-330.4	-318.3	14.3	9.1	11	32
DG-VAE ($ b = 32$)	-355.4	-294.1	65.2	9.1	32	32
DG-VAE (default)	-358.0	-290.8	70.8	9.1	32	32

 = ௫ logഇ(௭) [ఏ(|)] , = ௫ log ഝ(௭|௫) [ఏ(|)] = ௫(థ | ||ఏ()) ⁼ (థ()) − ௫(థ |) = |{|௫ഝ ௭|௫ > 0.01}| = |{|(థ ||ఏ()) < 0.03}| Small values indicate posterior collapse

$$
CU(\phi) = |\{i|KL(q_{\phi}(z_i)||p_{\theta}(z_i)) < 0.03\}|
$$

Small values indicate the hole problem

3. Experiment
a. Language modeling

Table 1: Statistics of sentences in the datasets

Dataset	Train	Valid	Test	Vocab size	Length (avg \pm std)
Yelp	100,000	10,000	10,000	19997	98.01 ± 48.86
Yahoo	100,000	10,000	10,000	20001	80.76 ± 46.21
Short-Yelp	100,000	10.000	10,000	8411	10.96 ± 3.60
SNLI	100,000	10.000	10,000	9990	11.73 ± 4.33

 $priorLL(\theta) = E_{\chi} \log E_{p_{\theta}(z)}[p_{\theta}(\chi|z)]$

Figure 2: The curves of $priorLL(\theta)$ and $postLL(\theta, \phi)$ in Gaussian distribution-based VAEs.

Figure 3: The curves of $priorLL(\theta)$ and $postLL(\theta, \phi)$ in vMF distribution-based VAEs.

3. Experiment
b. Visualization of the posterior Experiment
b. Visualization of the posterior
Experience of the posterior

Table 1: Statistics of sentences in the datasets

Dataset	Train	Valid	Test	Vocab size	Length (avg \pm std)
Yelp	100,000	10,000	10,000	19997	98.01 ± 48.86
Yahoo	100,000	10,000	10,000	20001	80.76 ± 46.21
Short-Yelp	100,000	10.000	10,000	8411	10.96 ± 3.60
SNLI	100,000	10.000	10,000	9990	$11.73 + 4.33$

Figure 4: The visualization of the aggregated posterior distributions (red-in-black) and the posterior centers distributions (blue-in-white) for BN-VAEs, FB-VAEs, β -VAEs, and DG-VAEs on the Yahoo test-set. Illustrations for more datasets, more models, and more dimensions, are shown in Appendix G .

Length (avg \pm std)

Length (avg \pm std)

3. Experiment

\n**c. Interpretation study**

\n
$$
z_a, z_b \sim q_{\phi}(z|x_a), q_{\phi}(z|x_b)
$$
\n
$$
z_{\lambda} = \lambda * z_a + (1 - \lambda) * z_b
$$
\n
$$
X_{\lambda} \sim p_{\theta}(x|z_{\lambda})
$$
\n
$$
Bauge $L_{\text{F1}} = \frac{1}{2}(F_{lcs}(x_a, x_{\lambda}) + F_{lcs}(x_b, x_{\lambda}))$ \n
$$
z_{\lambda} = \frac{1}{2}(F_{lcs}(x_a, x_{\lambda}) + F_{lcs}(x_b, x_{\lambda}))
$$
\n**3.6**

\n**4.100,000** 10,000 10,
$$

Dataset	Train	Valid	Test	Vocab size	Length (avg \pm std)
Yelp	100,000	10,000	10,000	19997	98.01 ± 48.86
Yahoo	100,000	10,000	10,000	20001	80.76 ± 46.21
Short-Yelp	100,000	10.000	10,000	8411	10.96 ± 3.60
SNLI	100,000	10.000	10,000	9990	11.73 ± 4.33

3. Experiment

\n**c. Interpretation study**

\n
$$
z_a, z_b \sim q_{\phi}(z|x_a), q_{\phi}(z|x_b)
$$
\n
$$
z_{\lambda} = \lambda * z_a + (1 - \lambda) * z_b
$$
\n
$$
x_{\lambda} \sim p_{\theta}(x|z_{\lambda})
$$
\n
$$
BaugeL_{F1} = \frac{1}{2}(F_{lcs}(x_a, x_{\lambda}) + F_{lcs}(x_b, x_{\lambda}))
$$
\n**4.3.3.1**

\n**5.1.1**

\n**6.2.1**

\n**6.3.2**

\n**7.3.3**

\n**8.4.3**

\n**8.5.4**

\n**9.6.4**

\n**100,000**

Dataset	Train	Valid	Test	Vocab size	Length (avg \pm std)
Yelp	100,000	10,000	10,000	19997	98.01 ± 48.86
Yahoo	100,000	10,000	10,000	20001	80.76 ± 46.21
Short-Yelp	100,000	10.000	10,000	8411	10.96 ± 3.60
SNLI	100,000	10.000	10,000	9990	11.73 ± 4.33

