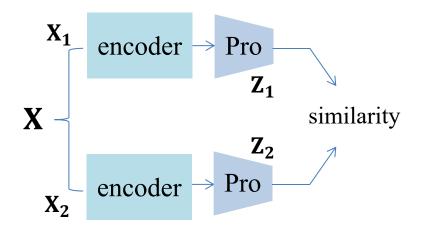


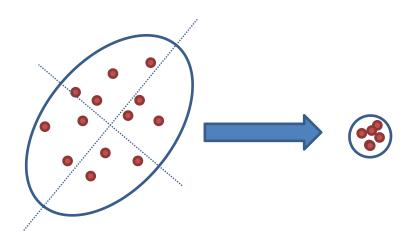
An Investigation into Whitening Loss for Self-supervised Learning

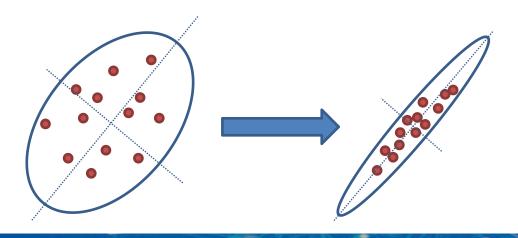
Xi Weng¹, Lei Huang^{1, 2}, Lei Zhao¹,

Rao Muhammad Anwer², Salman Khan², Fahad Shahbaz Khan²

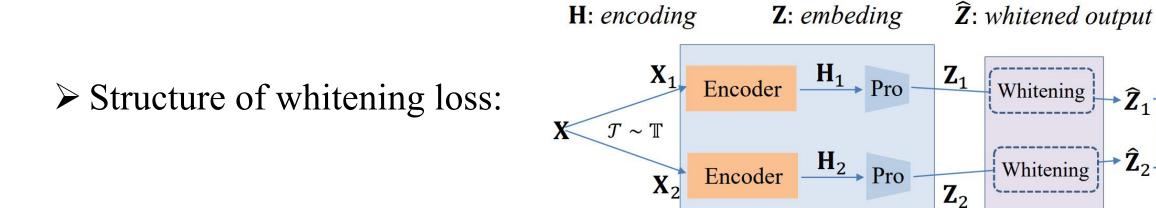
¹SKLSDE, Institute of Artificial Intelligence, Beihang University ²Mohamed bin Zayed University of Artificial Intelligence, UAE






Siamese Network and Collapse

Simaese Network


Dimensional Collapse

 $\mathcal{L}(\mathbf{x},\theta) = \mathbb{E}_{\mathbf{x}\sim\mathbb{D}, \mathcal{T}_{1,2}\sim\mathbb{T}} \ \ell(f_{\theta}(\mathcal{T}_{1}(\mathbf{x})), f_{\theta}(\mathcal{T}_{2}(\mathbf{x})))$

Whitening loss

► Loss function:

$$\min_{\theta} \mathcal{L}(\mathbf{x}; \theta) = \mathbb{E}_{\mathbf{x} \sim \mathbb{D}, \mathcal{T}_{1,2} \sim \mathbb{T}} \ell(\mathbf{z}_1, \mathbf{z}_2),$$

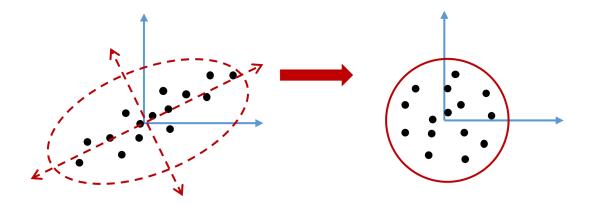
s.t. $cov(\mathbf{z}_i, \mathbf{z}_i) = \mathbf{I}, i \in \{1, 2\}.$

$$\min_{\theta} \mathcal{L}(\mathbf{X}; \theta) = \mathbb{E}_{\mathbf{X} \sim \mathbb{D}, \ \mathcal{T}_{1,2} \sim \mathbb{T}} \| \widehat{\mathbf{Z}}_1 - \widehat{\mathbf{Z}}_2 \|_F^2$$

with $\widehat{\mathbf{Z}}_i = \Phi(\mathbf{Z}_i), \ i \in \{1, 2\},$

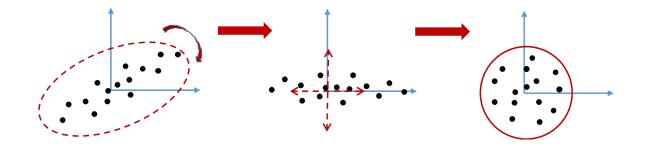
Siamese network

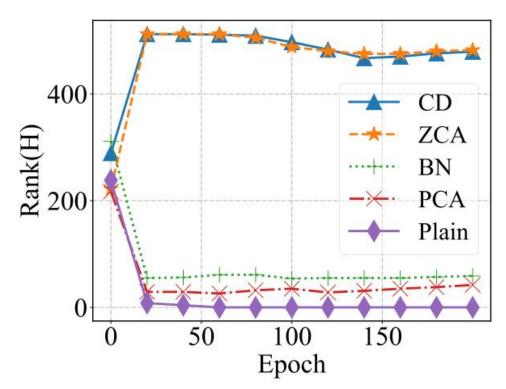
 \widehat{Z}_1


 $\hat{\mathbf{Z}}_{2}$

Distance

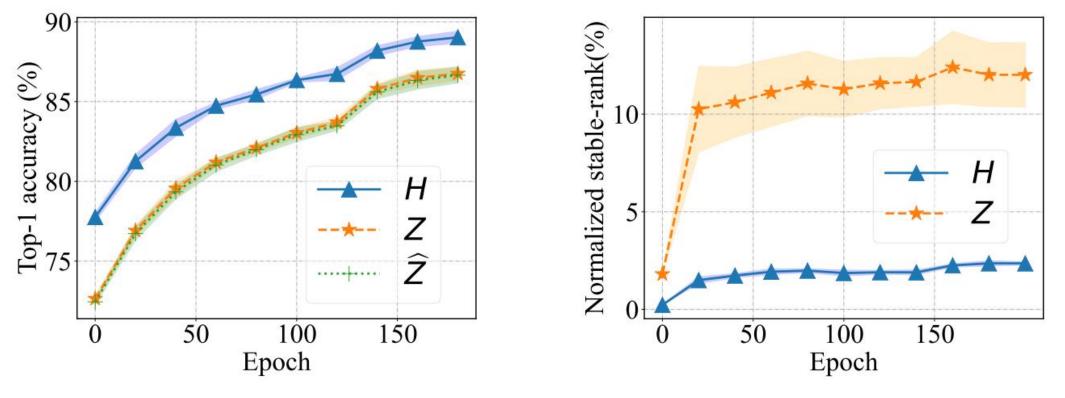
Motivations of whitening loss


- Motivations of whitening loss:
- 1. Whitening operation can **remove the correlation among axes**
- 2. A whitened representation ensures the examples scattered in a **spherical distribution**

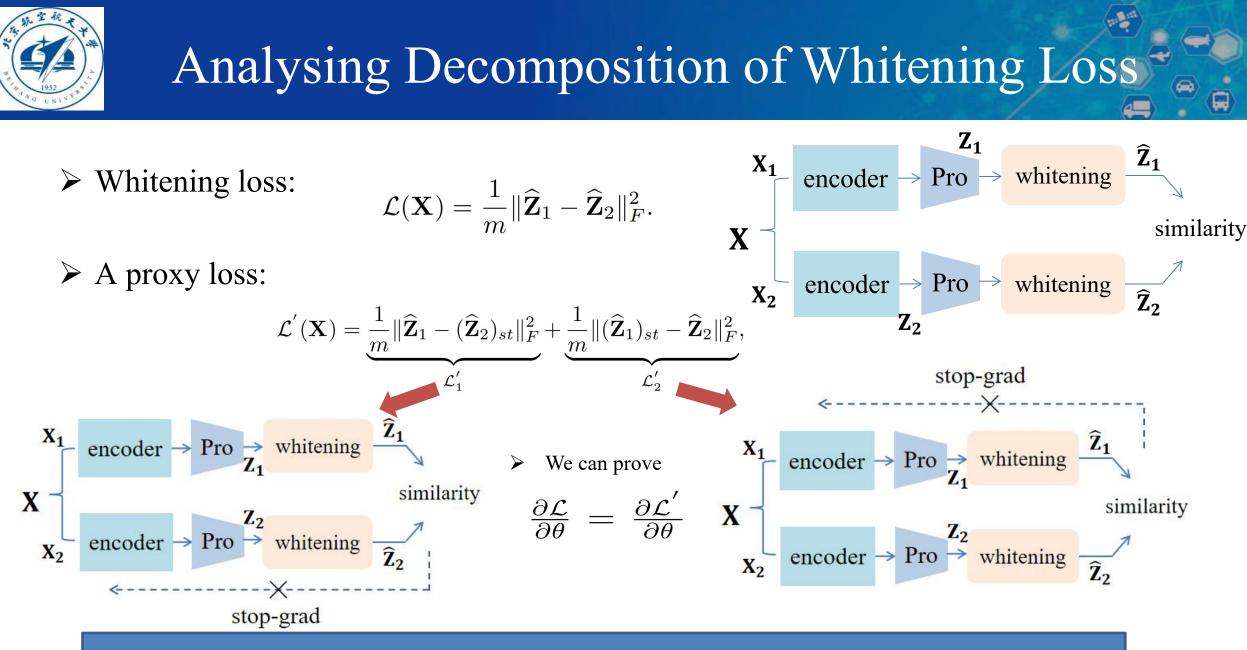


Are motivations of whitening loss correct?

> PCA Whitening (can also remove the correlation among axes)



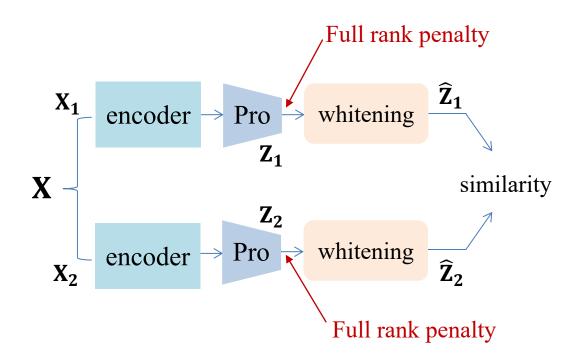
- ✓ A PCA whitened representation also ensures the examples scattered in a spherical distribution
- However, PCA Whitening Fails to Avoid Dimensional Collapse

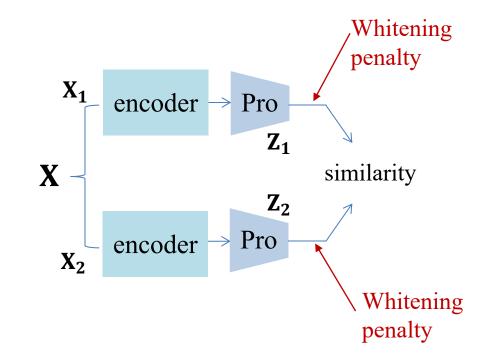


≻Whitened Output is not a Good Representation.

The normalized stable-rank of \hat{z} is always 100%

Minimizing \mathcal{L}'_1 only require the embedding \mathbf{Z}_1 being full-rank, not whitened

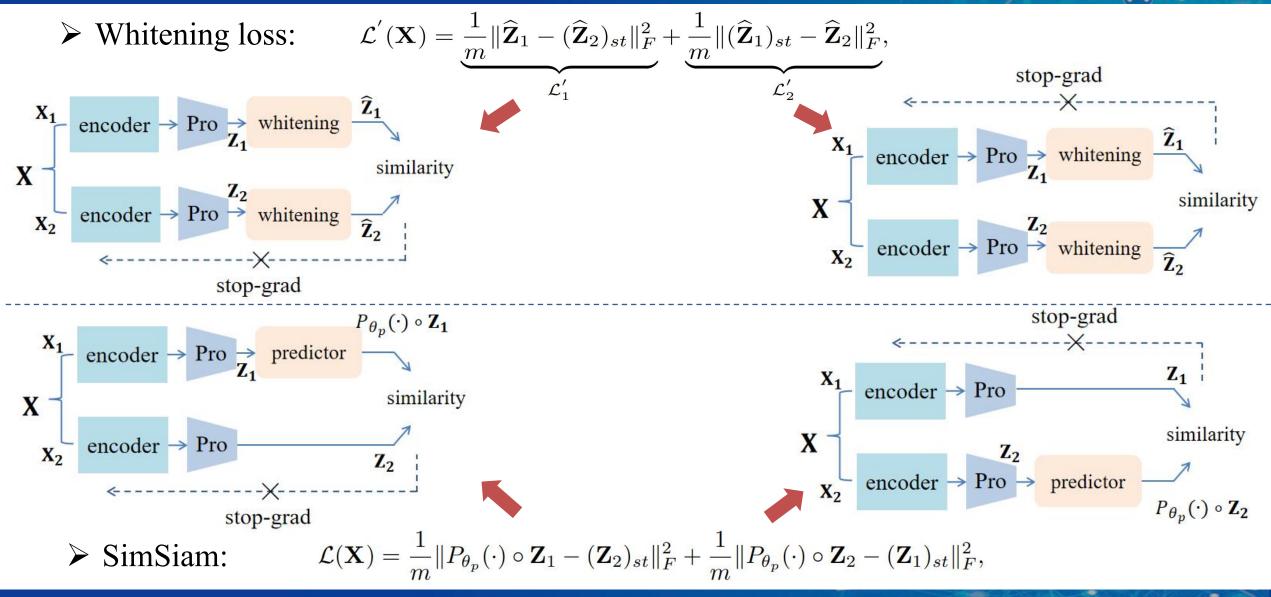



Connection to Soft Whitening

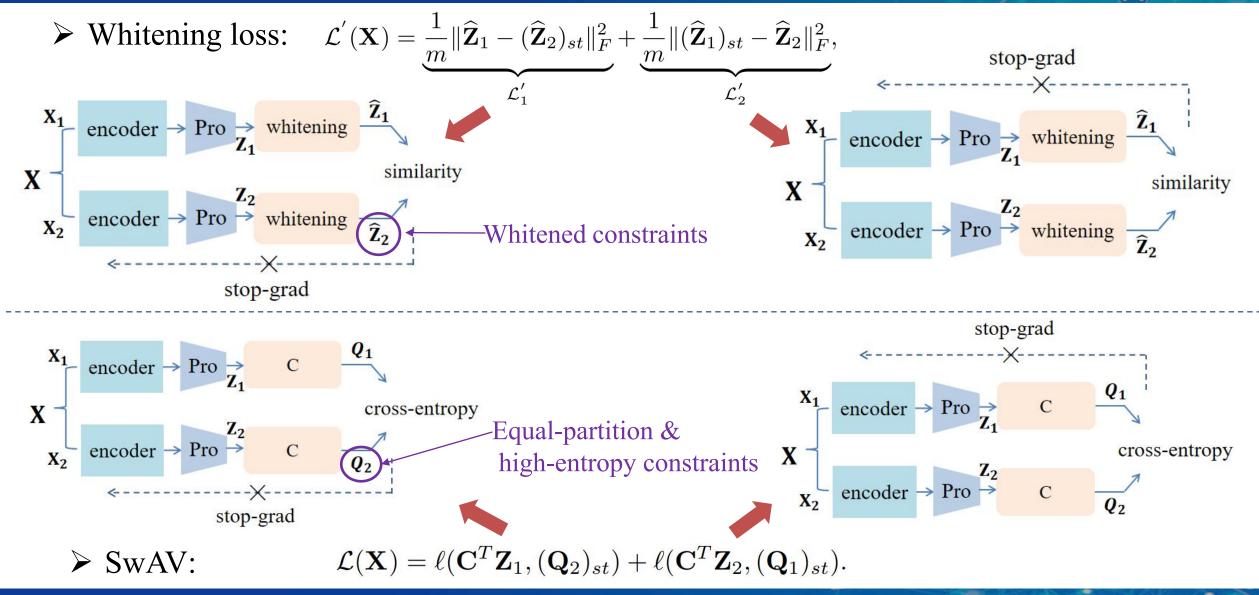
> Whitening loss:

$$\mathcal{L}(\mathbf{X}) = \frac{1}{m} \|\widehat{\mathbf{Z}}_1 - \widehat{\mathbf{Z}}_2\|_F^2.$$

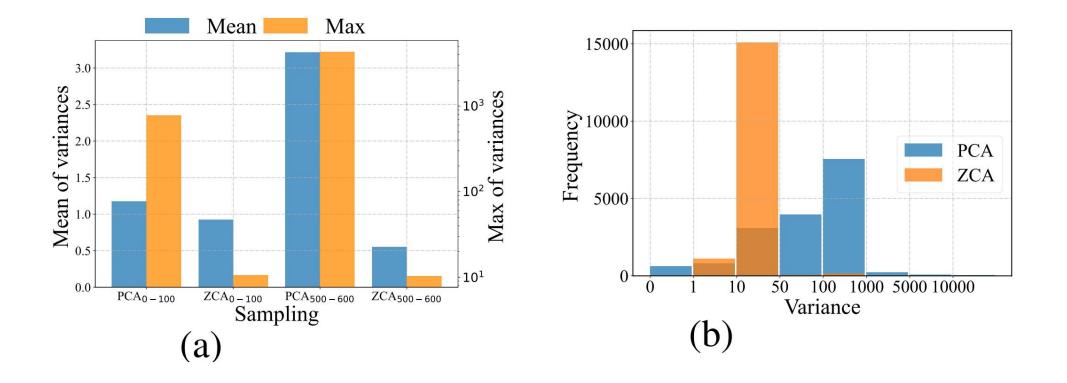
$$\mathcal{L}(\mathbf{X}) = \frac{1}{m} \|\mathbf{Z}_1 - \mathbf{Z}_2\|_F^2 + \alpha \sum_{i=1}^2 (\|\frac{1}{m} \mathbf{Z}_i \mathbf{Z}_i^T - \lambda \mathbf{I}\|_F^2),$$



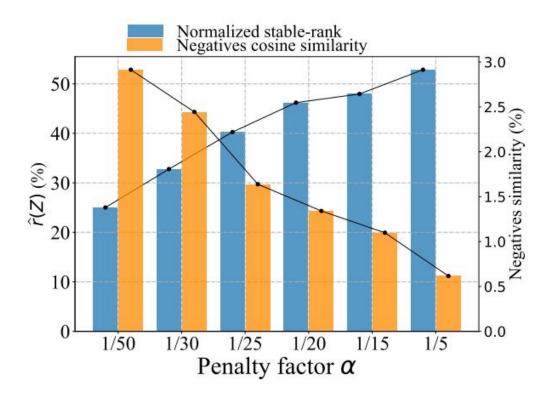
-



Connection to Asymmetirc Methods

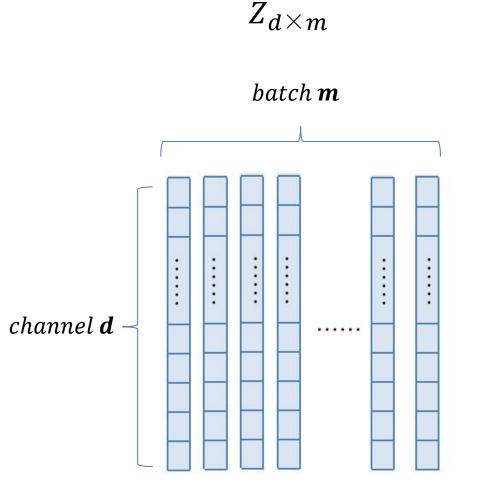


Connection to Other Non-contrastive Methods


Why PCA Whitening Fails to Avoid Dimensional Collapse?

> PCA whitening: volatile sequence of whitened targets

Why Whitened Output is not a Good Representation?



Similarity decreases when extent of whitening increases

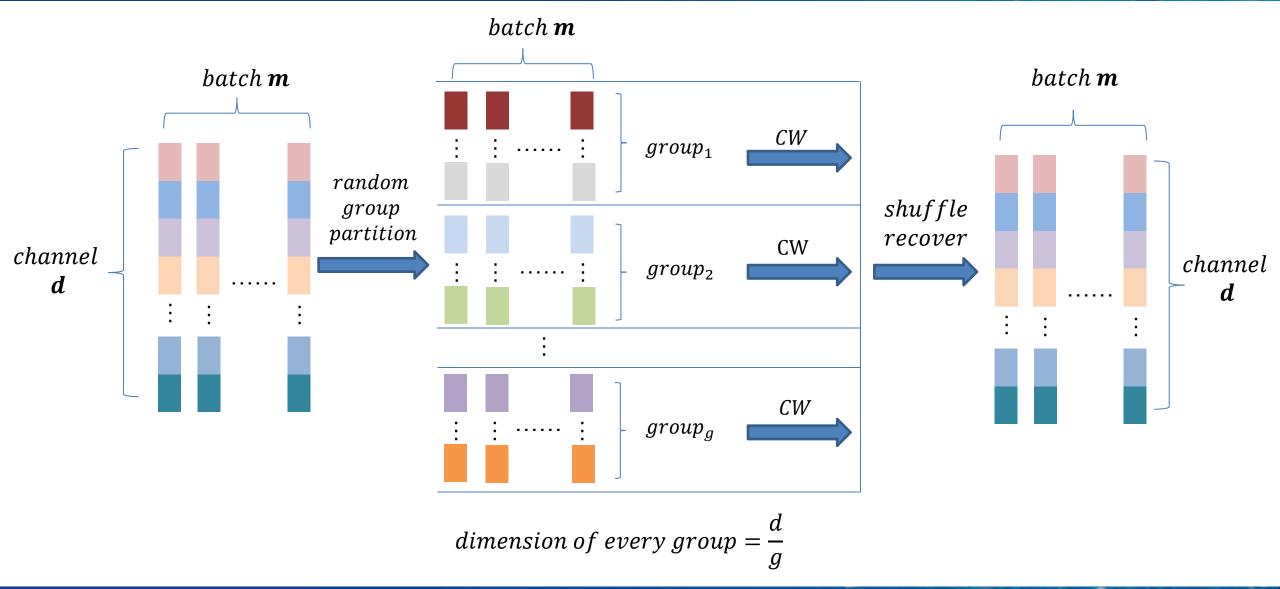
A whitened output leads to the state that can break the potential manifold the examples in the same class belong to

Channel Whitening (CW)

- ≻ Batch whitening (BW)
- centering: $Z_B = Z \cdot (I \frac{1}{m} \mathbf{1} \cdot \mathbf{1}^T)$

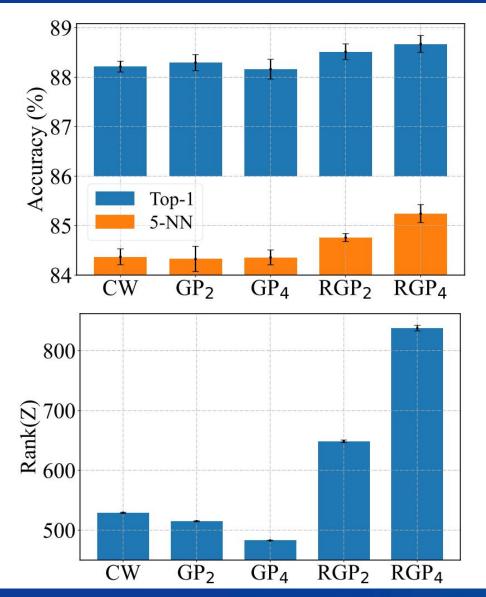
$$\Sigma = \frac{1}{m-1} Z_B \cdot Z_B^T$$

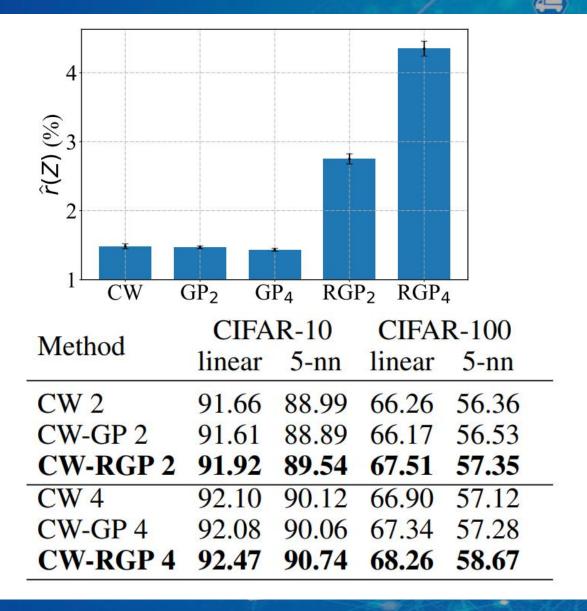
$$\widehat{Z} = \Phi \cdot Z_B$$


requires **m** > **d** to avoid numerical instability.

- ≻ Channel whitening (CW)
- centering: $Z_c = (I \frac{1}{d} \mathbf{1} \cdot \mathbf{1}^T) \cdot Z$
- $\Sigma = \frac{1}{d-1} Z_C^T \cdot Z_C$ • $\widehat{Z} = Z_C \cdot \Phi$

can obtain numerical stability when the batch size is small, since the condition that d > m can be obtained by design.




Random Group Partition (RGP)

Random Group Partition (RGP)

11: 0 :st

Experimental Setup for Comparison of Baselines

Table 1: Classification accuracy (top 1) of a linear classifier and a 5-nearest neighbors classifier for different loss functions and datasets with a ResNet-18 encoder.

Method	CIFAR-10		CIFAR-100		STL-10		Tiny-ImageNet	
Method	linear	5-nn	linear	5-nn	linear	5-nn	linear	5-nn
SimCLR [6]	91.80	88.42	66.83	56.56	90.51	85.68	48.84	32.86
BYOL [16]	91.73	89.45	66.60	56.82	91.99	88.64	51.00	36.24
SimSiam [8] (repro.)	90.51	86.82	66.04	55.79	88.91	84.84	48.29	34.21
Shuffled-DBN [21] (repro.)	90.45	88.15	66.07	56.97	89.20	84.51	48.60	32.14
Barlow Twins [45] (repro.)	88.51	86.53	65.78	55.76	88.36	83.71	47.44	32.65
VICReg [2] (repro.)	90.32	88.41	66.45	56.78	90.78	85.72	48.71	33.35
Zero-ICL [48] (repro.)	88.12	86.64	61.91	53.47	86.35	82.51	46.25	32.74
W-MSE 2 [12]	91.55	89.69	66.10	56.69	90.36	87.10	48.20	34.16
W-MSE 4 [12]	91.99	89.87	67.64	56.45	91.75	88.59	49.22	35.44
CW-RGP 2 (ours)	91.92	89.54	67.51	57.35	90.76	87.34	49.23	34.04
CW-RGP 4 (ours)	92.47	90.74	68.26	58.67	92.04	88.95	50.24	35.99

Experimental Setup for Large-Scale Classification

Table 2: Comparisons on ImageNet linear classification. All are based on ResNet-50 encoder. The table is mostly inherited from [8].

Method	Batch size	100 eps	200 eps
SimCLR [6]	4096	66.5	68.3
MoCo v2 [7]	256	67.4	69.9
BYOL [16]	4096	66.5	70.6
SwAV [4]	4096	66.5	69.1
SimSiam [8]	256	68.1	70.0
W-MSE 4 [12]	4096	69.4	-
Zero-CL [48]	1024	68.9	-
BYOL [16] (repro.)	512	66.1	69.2
SwAV [4] (repro.)	512	65.8	67.9
W-MSE 4 [12] (repro.)	512	66.7	67.9
CW-RGP 4 (ours)	512	69.7	71.0

Experiments for Empirical Study

Transfer to downstream tasks

Table 3: Transfer Learning. All competitive unsupervised methods are based on 200-epoch pretraining in ImageNet (IN). The table is mostly inherited from [8]. Our CW-RGP is performed with 3 random seeds, with mean and standard deviation reported.

AP_{50}	AP	A D	1.0					
	711	AP ₇₅	AP_{50}	AP	AP ₇₅	AP_{50}	AP	AP ₇₅
0.2	33.8	33.1	44.0	26.4	27.8	46.9	29.3	30.8
31.3	53.5	58.8	58.2	38.2	41.2	54.7	33.3	35.2
1.8	55.5	61.4	57.7	37.9	40.9	54.6	33.3	35.3
2.3	57.0	63.3	58.8	39.2	42.5	55.5	34.3	36.6
31.4	55.3	61.1	57.8	37.9	40.9	54.3	33.2	35.0
1.5	55.4	61.4	57.6	37.6	40.3	54.2	33.1	35.1
32.0	56.4	62.8	57.5	37.9	40.9	54.2	33.2	35.2
	1.3 1.8 2.3 1.4 1.5	1.3 53.5 1.8 55.5 2.3 57.0 1.4 55.3 1.5 55.4	1.353.558.81.855.561.4 2.3 57.063.31.455.361.11.555.461.4	1.353.558.858.21.855.561.457.7 2.3 57.063.358.81.455.361.157.81.555.461.457.6	1.353.558.858.238.21.855.561.457.737.9 2.3 57.063.358.839.21.455.361.157.837.91.555.461.457.637.6	1.353.558.858.238.241.21.855.561.457.737.940.9 2.3 57.063.358.839.242.51.455.361.157.837.940.91.555.461.457.637.640.3	1.353.558.858.238.241.254.71.855.561.457.737.940.954.6 2.3 57.063.358.839.242.555.51.455.361.157.837.940.954.31.555.461.457.637.640.354.2	1.353.558.858.238.241.254.733.31.855.561.457.737.940.954.633.3 2.3 57.063.358.839.242.555.534.31.455.361.157.837.940.954.333.21.555.461.457.637.640.354.233.1

➢ Take Away

- > An in-depth analysis in whitening loss
- ➤ An effective SSL method: CW-RGP

Thank you

https://github.com/winci-ai/CW-RGP