Efficient Sampling on Riemannian Manifolds via Langevin MCMC ampling on Riemannian Manifolds
via Langevin MCMC
_{Xiang Cheng, Jingzhao Zhang, Suvrit Sra}

Sampling over Riemannian Manifolds

Given manifold (M, g) , sample from $\boldsymbol{dp}(\pmb{x}) = \ \pmb{e}^{-\boldsymbol{U}(\pmb{x})}\boldsymbol{dvol}_{\boldsymbol{g}}(\pmb{x})$

- $U(x)$: $M \to \mathbb{R}$ is a potential function (e.g. negative-log-posterior)
- $dvol_{g}(x)$ is manifold volume, in coordinates, it is $\sqrt{\det(g)}$.

The Riemannian Langevin Diffusion (RLD):

$$
dx(t) = -\text{grad } U\big(x(t)\big)dt + dB_t^g
$$

- grad U denotes the manifold gradient, and dB_t^g denotes the manifold Brownian motion
- Has invariant distribution $e^{-U(x)} dvol_{g}(x)$

Sampling over Riemannian Manifolds

Given manifold (M, g) , sample from $dp(x) = e^{-U(x)} dvol_g(x)$

- $U(x)$: $M \to \mathbb{R}$ is a potential function (e.g. negative-log-posterior)
- $dvol_{g}(x)$ is manifold volume, in coordinates, it is $\sqrt{\det(g)}$.

The Riemannian Langevin Diffusion (RLD):

$$
dx(t) = -\text{grad }U\big(x(t)\big)dt + dB_t^g
$$

- grad U denotes the manifold gradient, and dB_t^g denotes the manifold Brownian motion
- Has invariant distribution $e^{-U(x)} dvol_{g}(x)$

Riemannian Langevin MCMC

Based on the geometric Euler Murayama Discretization of RLD:

$$
x_{(k+1)\delta} = Exp_{x_{k\delta}}(-\delta \text{ grad } U(x_{k\delta}) + \sqrt{\delta} \xi_k)
$$

Riemannian Langevin MCMC

Based on the geometric Euler Murayama Discretization of RLD:
 $x_{(k+1)\delta} = Exp_{x_{k\delta}}(-\delta \text{ grad } U(x_{k\delta}) + \sqrt{\delta} \xi_k)$

where ξ_k is "standard Gaussian" wrt an orthonormal basis at $T_{x_k}M$
 Exponential

Exponential maps can be approximated to high accuracy efficiently

RLMCMC can be much faster than Euclidean Langevin MCMC **EXEMC CALTA COMPLANE COMPTE CONTROLL CONDUCT:**
• Given: unobserved ($\mu = 0, \sigma = 10$), observe samples $x_1 ... x_{100} \sim \mathcal{N}(\mu, \sigma^2)$.
• Task: sample from the posterior distribution $p(\mu, \sigma | x_1 ... x_{100}) \propto \exp\left(\sum_l \frac{||x_l - \mu||^2}{2$ $\frac{1}{\sigma^2}$
 $\frac{1}{\mu} \frac{||x_i - \mu||^2}{2\sigma^2} - N \log \sigma$

- Given: unobserved $(\mu = 0, \sigma = 10)$, observe samples $x_1 ... x_{100} \sim \mathcal{N}(\mu, \sigma^2)$.
- Task: sample from the posterior distribution $p(\mu, \sigma | x_1 ... x_{100}) \propto \exp\left(\sum_i \frac{||x_i \mu||^2}{2\sigma^2} N \log \sigma\right)$

• Task: sample from the posterior distribution , |ଵ … ଵ ∝ exp [∑] /^ଶ 0

Key Assumptions

- Assume (M, g) satisfies
	- Ricci curvature lower bounded by $-L_{ric}$
	- Absolute value of sectional curvature upper bounded by L_{sec}
- Assume $-U$ satisfies
	- (gradient Lipschitz) $\textbf{Hess}(U)[v,v] \leq L_U ||v||^2$, for all $x \in M$, $v \in T_xM$
	- (distant dissipativity) $\left(\Gamma_X^{\mathcal{Y}}\right)$ grad $U(y)$ grad $U(x)$, $\chi^-(y)$ $\geq m$ dist (x, y) , $\vert u^{-1}(y) \vert > m$ dist(x y)² $\overline{}$ for all dist(x, y) > R and some m > $-L_{Ric}$

Key Assumptions

- Assume (M, g) satisfies
	- Ricci curvature lower bounded by $-L_{ric}$
	- Absolute value of sectional curvature upper bounded by L_{sec}
- Assume $-U$ satisfies
	- (gradient Lipschitz) $\textbf{Hess}(U)[\bm{\nu},\bm{\nu}] \leq L_{\bm{U}} \|\bm{\nu}\|^2$, for all $x \in M$, $\nu \in T_xM$
	- (distant dissipativity) $\left(\Gamma_X^{\mathcal{Y}}\right)$ grad $U(y)$ grad $U(x)$, $\chi^-(y)$ $\geq m$ dist (x, y) , $\vert u^{-1}(y) \vert > m$ dist(x y)² $\overline{}$ for all dist(x, y) > R and some m > $-L_{Ric}$

Key Assumptions

- Assume (M, g) satisfies
	- Ricci curvature lower bounded by $-L_{ric}$
	- Absolute value of sectional curvature upper bounded by L_{sec}
- Assume $-U$ satisfies
	- (gradient Lipschitz) $\textbf{Hess}(U)[v,v] \leq L_U ||v||^2$, for all $x \in M$, $v \in T_xM$
	- (distant dissipativity) $\left\langle \Gamma_{\chi}^{\mathcal{Y}}\mathrm{grad} \; U(\mathcal{y}) \mathrm{grad} \; U(\mathcal{x}) \right\rangle$ $\chi(y)$ $\geq m$ dist(x, y), $\vert u^{-1}(y) \vert > m$ dist(x y)² $\overline{}$ for all dist(x, y) > R and some $m > -L_{Ric}$

Main Theoretical Result

- Assume (M, g) satisfies
	- Ricci curvature lower bounded by $-L_{ric}$, for some $L_{Ric} > 0$
	- Absolute value of sectional curvature upper bounded by L_{sec}
- Assume $-U$ satisfies
	- (gradient Lipschitz) $\textbf{Hess}(U)[v,v] \leq L_U ||v||^2$, for all $x \in M$, $v \in T_xM$
	- (distant dissipativity) $\left(\Gamma_{x}^{y}\right)$ grad $U(y)$ grad $U(x)$, χ (*y*) ℓ *m* dist(*x*, *y*), $^{-1}(v)$ > m dist(x v)² $\overline{}$ for all dist(x, y) > R and some $m > L_{Ric}$

Theorem 1

Let $x_{k\delta}$ be iterates of RLMCMC, and let $y(t)$ denote RLD, then $\mathbb{E}[\text{dist}(x_{K\delta}, y(K\delta))] \leq \epsilon$

for $K = \text{poly}\left(e^{(L_U + L_{ric})R^2}, L_{sec}, L_U, d, \frac{1}{m_U - 1}\right) \cdot 1/\epsilon^2$ \int sec, L U, $\left(u,\frac{m-1}{m-1}\right)$. $1/\epsilon$ ⁻ $1 \quad 112$ $m-L_{Ric}$, $\left(\begin{array}{c} 1 \end{array} \right)$ ଶ