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insights on the decision process.

Two primary problem settings regarding interpretability in literature:
1. Post-hoc approaches
2. Interpretability by design

We propose a novel framework FLINT — jointly learns a predictor and its
associated interpreter. Primarily to learn interpretable models by design.

Key aspects of FLINT
® A special case applicable for post-hoc interpretations.

® Means of interpretation: raw features, simplified representation,
prototypes, logical rules, high-level features/concepts.

® Scope of interpretation: Local AND Global.
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® Optimization problem:
arg  min  Lpeq(f,S) + Line(f,g,S)

feF,geGr
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® F — Space of predictive models.
Gr — Family of interpreter models dependent on f.

® QOur goal is to address SLI when F instantiated with deep neural
networks and task is multi-class classification.




Specializing SLI: Post-hoc interpretation
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® A special case with f = f is fixed and we only learn g.

® Optimization problem:

i Ein 7?7 aSa
arg min «(f,8,8)

(No gradients are backpropagated to f.)
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function h characterized by weight matrix W.
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® Complete interpretability loss term:

ﬁint(f, (‘Dv ha d,S) = 5‘Cof(fa CD, ha S) + 5£cd(¢38) +’yﬁif(¢7 ha da S)

® Composed of three individual terms:

m Fidelity to output term Lor: Generalized cross-entropy between g(x)
and f(x). Their outputs should match.

m Conciseness and Diversity term L4 For single sample, small # of
@j's should activate (Conciseness). Across many samples, multiple
attributes should be used (Diversity). Entropy based loss (Jain et al).

m Fidelity to input term Ljs. To promote encoding high-level patterns
relevant to input. Use of autoencoder via decoder d (Melis &
Jaakkola).

® Lored(f,S) is the standard cross-entropy loss.
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How do we get local and global interpretability from our trained model?

1.

Local relevance of an attribute j for sample x (rj ): Obtained via
activation ¢;(x) and weight for that attribute w; ;.

Qj.9,x
P D 2. S
i x max,|a,yx|7 ajgx = j(x).wjy

. Global relevance: Average out r; , for samples with same predicted

class to get relationship of class-attribute relationships r; ..

ZrJX,S ={xeSly=c}
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. Understanding concept encoded by an attribute.

1 + 3 — local interpretability
2 4+ 3 — global interpretability
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® Compute global relevance r; . (for each class c).
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Figure: Flow to understand encoded concept by attribute ¢;

Compute global relevance r; . (for each class c).

Select relevant class-attribute pairs by thresholding r; ..

® Analyze each pair by repeating this:
m Select samples of class ¢ maximally activating ¢; (MAS).

m Use Activation Maximization w/ Partial Initialization (AM+PI) as
tool — optimizes weakly initialized input to maximally activate ¢;.

Can use AM+-PI to analyze any sample for local interpretations.
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Experimental Validation

® Datasets & Networks:
m MNIST, FashionMNIST — LeNet,
= CIFAR10, QuickDraw subset (Hand sketch recognition) — ResNet18.

® Quantitative Evaluation Metrics:

m Accuracy: Two goals (1) Comparison to other interpretable NN
architectures, (2) Training f & g jointly does not negatively affect
performance.

m Fidelity of interpreter: Fraction of samples where prediction of g is
same as f.

m Conciseness of interpretations: Average number of attributes
"important” to interpretations.

CNSgx = [{J : |1 > 1/7}




Results — Quantitative |

BASE-f SENN PrototypeDNN FLINT-f FLINT-g
MNIST 98.94+0.1 98.4+£0.1 99.2 98.94+0.2  98.31+0.2
FashionMNIST = 90.4+£0.1  84.24+0.3 90.0 90.5+0.2 86.8+0.4
CIFAR10 84.7+0.3  77.8+0.7 - 84.5+£0.2 84.0+0.4
QuickDraw 85.3+0.2 85.5+0.4 - 85.7+£0.3 85.4+0.1

Table: Accuracy (in %) on different datasets. BASE-f is system trained with
just accuracy loss. FLINT-f, FLINT-g denote the predictor and interpreter
trained in our framework.

Dataset LIME VIBI FLINT-g
MNIST 95.6+0.4 96.6+0.7 98.7+0.1
FashionMNIST 67.3£1.3 88.44+0.3 91.5+0.1
CIFAR-10 31.5+0.9 65.54+0.3 93.24+0.2
QuickDraw 76.3+0.1 78.6+0.4 90.8+0.4

Table: Results for fidelity to FLINT-f (in %)




Global Interpretations |
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® Subjective Evaluation: Survey with 20 participants to evaluate
meaningfulness of interpretations. Visualization + textual description
of an attribute. Asked to indicate agreement/disagreement

® Post-hoc Experiments: Interpreting the BASE-f model (trained
only for accuracy).

® Additional results on more complex datasets CIFAR100, CUB-200.

¢ Shuffling experiment: Extreme test by shuffling attribute
activations and observing drop in accuracy

® Multiple ablation studies, more visualizations in supplementary
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Conclusion & Future Work

® We have proposed a framework covering interpretable systems by
design as well as generating post-hoc interpretations, which provides
local and global interpretations in terms of high level attributes.

® To guarantee complete faithfulness, FLINT-g can always be used as
the final prediction model.

® Compression and interpretability through g.
® Application to other types of tasks, other input modalities. Search

for different representations of attributes/concepts, adapt
constraints according to task.




The End

THANK YOU!

For complete details please check out our paper + supplementary




