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Introduction

• Interpretability is the ability to provide human-understandable
insights on the decision process.

Two primary problem settings regarding interpretability in literature:

1. Post-hoc approaches

2. Interpretability by design

We propose a novel framework FLINT – jointly learns a predictor and its
associated interpreter. Primarily to learn interpretable models by design.

Key aspects of FLINT

• A special case applicable for post-hoc interpretations.

• Means of interpretation: raw features, simplified representation,
prototypes, logical rules, high-level features/concepts.

• Scope of interpretation: Local AND Global.



Introduction

• Interpretability is the ability to provide human-understandable
insights on the decision process.

Two primary problem settings regarding interpretability in literature:

1. Post-hoc approaches

2. Interpretability by design

We propose a novel framework FLINT – jointly learns a predictor and its
associated interpreter. Primarily to learn interpretable models by design.

Key aspects of FLINT

• A special case applicable for post-hoc interpretations.

• Means of interpretation: raw features, simplified representation,
prototypes, logical rules, high-level features/concepts.

• Scope of interpretation: Local AND Global.



Introduction

• Interpretability is the ability to provide human-understandable
insights on the decision process.

Two primary problem settings regarding interpretability in literature:

1. Post-hoc approaches

2. Interpretability by design

We propose a novel framework FLINT – jointly learns a predictor and its
associated interpreter. Primarily to learn interpretable models by design.

Key aspects of FLINT

• A special case applicable for post-hoc interpretations.

• Means of interpretation: raw features, simplified representation,
prototypes, logical rules, high-level features/concepts.

• Scope of interpretation: Local AND Global.



Supervised Learning with Interpretation (SLI)

• Generic task SLI: Considers prediction and interpretation as separate
tasks with dedicated models f and g .

• Optimization problem:

arg min
f∈F,g∈Gf

Lpred(f ,S) + Lint(f , g ,S)

• F – Space of predictive models.
Gf – Family of interpreter models dependent on f .

• Our goal is to address SLI when F instantiated with deep neural
networks and task is multi-class classification.



Supervised Learning with Interpretation (SLI)

• Generic task SLI: Considers prediction and interpretation as separate
tasks with dedicated models f and g .

• Optimization problem:

arg min
f∈F,g∈Gf

Lpred(f ,S) + Lint(f , g ,S)

• F – Space of predictive models.
Gf – Family of interpreter models dependent on f .

• Our goal is to address SLI when F instantiated with deep neural
networks and task is multi-class classification.



Supervised Learning with Interpretation (SLI)

• Generic task SLI: Considers prediction and interpretation as separate
tasks with dedicated models f and g .

• Optimization problem:

arg min
f∈F,g∈Gf

Lpred(f ,S) + Lint(f , g ,S)

• F – Space of predictive models.
Gf – Family of interpreter models dependent on f .

• Our goal is to address SLI when F instantiated with deep neural
networks and task is multi-class classification.



Specializing SLI: Post-hoc interpretation

• A special case with f = f̂ is fixed and we only learn g .

• Optimization problem:

arg min
g∈Gf̂
Lint(f̂ , g ,S),

(No gradients are backpropagated to f .)



Design of FLINT

FLINT: Framework to Learn INTerpretable networks

Figure: System Overview

• Interpreter g(x) = h ◦Ψ ◦ fI(x) = h ◦ Φ(x) := softmax(W TΦ(x)).
Computes composition of attribute functions Φ(x) and interpretable
function h characterized by weight matrix W .

• Attribute dictionary: functions φj : X → R+, j = 1, . . . J. φj(x) is
activation of some high level attribute, i.e. a ”concept” over X .
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Losses for Interpretability

• Complete interpretability loss term:

Lint(f ,Φ, h, d ,S) = βLof (f ,Φ, h,S) + δLcd(Φ,S) + γLif (Φ, h, d ,S)

• Composed of three individual terms:

Fidelity to output term Lof : Generalized cross-entropy between g(x)
and f (x). Their outputs should match.

Conciseness and Diversity term Lcd : For single sample, small # of
φj ’s should activate (Conciseness). Across many samples, multiple
attributes should be used (Diversity). Entropy based loss (Jain et al).

Fidelity to input term Lif . To promote encoding high-level patterns
relevant to input. Use of autoencoder via decoder d (Melis &
Jaakkola).

• Lpred(f ,S) is the standard cross-entropy loss.
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Generating Interpretations
How do we get local and global interpretability from our trained model?

1. Local relevance of an attribute j for sample x (rj,x): Obtained via
activation φj(x) and weight for that attribute wj,ŷ .

rj,x =
αj,ŷ ,x

maxi |αi,ŷ ,x |
, αj,ŷ ,x = φj(x).wj,ŷ

2. Global relevance: Average out rj,x for samples with same predicted
class to get relationship of class-attribute relationships rj,c .

rj,c =
1

|Sc |
∑
x∈Sc

rj,x ,Sc = {x ∈ S|ŷ = c}

3. Understanding concept encoded by an attribute.

1 + 3 −→ local interpretability

2 + 3 −→ global interpretability
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rj,x =
αj,ŷ ,x
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αj,ŷ ,x

maxi |αi,ŷ ,x |
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Generating Interpretations

Last piece: How do we understand concept encoded by an attribute φj?

Figure: Flow to understand encoded concept by attribute φj

• Compute global relevance rj,c (for each class c).

• Select relevant class-attribute pairs by thresholding rj,c .

• Analyze each pair by repeating this:

Select samples of class c maximally activating φj (MAS).

Use Activation Maximization w/ Partial Initialization (AM+PI) as
tool – optimizes weakly initialized input to maximally activate φj .

• Can use AM+PI to analyze any sample for local interpretations.
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Experimental Validation

• Datasets & Networks:

MNIST, FashionMNIST – LeNet,

CIFAR10, QuickDraw subset (Hand sketch recognition) – ResNet18.

• Quantitative Evaluation Metrics:

Accuracy : Two goals (1) Comparison to other interpretable NN
architectures, (2) Training f & g jointly does not negatively affect
performance.

Fidelity of interpreter : Fraction of samples where prediction of g is
same as f .

Conciseness of interpretations: Average number of attributes
”important” to interpretations.

CNSg,x = |{j : |rj,x | > 1/τ}|



Results – Quantitative I

BASE-f SENN PrototypeDNN FLINT-f FLINT-g

MNIST 98.9±0.1 98.4±0.1 99.2 98.9±0.2 98.3±0.2
FashionMNIST 90.4±0.1 84.2±0.3 90.0 90.5±0.2 86.8±0.4
CIFAR10 84.7±0.3 77.8±0.7 – 84.5±0.2 84.0±0.4
QuickDraw 85.3±0.2 85.5±0.4 – 85.7±0.3 85.4±0.1

Table: Accuracy (in %) on different datasets. BASE-f is system trained with
just accuracy loss. FLINT-f , FLINT-g denote the predictor and interpreter
trained in our framework.

Dataset LIME VIBI FLINT-g

MNIST 95.6±0.4 96.6±0.7 98.7±0.1
FashionMNIST 67.3±1.3 88.4±0.3 91.5±0.1
CIFAR-10 31.5±0.9 65.5±0.3 93.2±0.2
QuickDraw 76.3±0.1 78.6±0.4 90.8±0.4

Table: Results for fidelity to FLINT-f (in %)



Global Interpretations I

(a) Global relevances (rj,c ) for all
class-attribute pairs for QuickDraw

(b) Sample class-attribute pairs with
high relevance



Local Interpretations

Figure: Local interpretation example. True label ’Cow’
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Further Evaluation & Experiments

• Subjective Evaluation: Survey with 20 participants to evaluate
meaningfulness of interpretations.

Visualization + textual description
of an attribute. Asked to indicate agreement/disagreement

• Post-hoc Experiments: Interpreting the BASE-f model (trained
only for accuracy).

• Additional results on more complex datasets CIFAR100, CUB-200.

• Shuffling experiment: Extreme test by shuffling attribute
activations and observing drop in accuracy

• Multiple ablation studies, more visualizations in supplementary
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Conclusion & Future Work

• We have proposed a framework covering interpretable systems by
design as well as generating post-hoc interpretations, which provides
local and global interpretations in terms of high level attributes.

• To guarantee complete faithfulness, FLINT-g can always be used as
the final prediction model.

• Compression and interpretability through g .

• Application to other types of tasks, other input modalities. Search
for different representations of attributes/concepts, adapt
constraints according to task.
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The End

THANK YOU!

For complete details please check out our paper + supplementary


