Learning interaction rules from multi-animal
trajectories via augmented behavioral models
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Multi-agent movement sequences

Extracting the interaction rules of biological agents from
movement sequences pose challenges in various domains

Animals (bats) Humans (in basketball)
return

Other: pedestrians, vehicles .....

Discovering the directed interaction will contribute to the
understanding of the principles of biological agents' behaviors



Granger causality (GC) and problems

Granger causality [Granger, 1969] is a practical framework for
exploratory analysis in various fields

* Recently: inferring GC under nonlinear dynamics [Tank+18; Khanna+19]

Problem: the structure of the generative process in biological multi-
agent trajectories, which include time-varying dynamical systems, is not
fully utilized in existing base models of GC (e.g., VAR and NN)

1. Ignoring the structures of such processes will lead to interpretational
problems and sometimes erroneous assessments of causality

solution: incorporating the structures into the base model for inferring GC,
e.g., augmenting (inherently) incomplete behavioral models with
interpretable data-driven models, can solve these problems

2. Data-driven models sometimes detect false causality that is
counterintuitive to the user of the analysis

solution: introducing architectures and regularization to utilize scientific
knowledge will be effective for a reliable base model of a GC method




Overview of our method

1. Formulation of augmented Conceptual animal behavioral model

behavioral model (ABM) (sec. 3.2) T, = fL(fan(rlxh), far(ri xh), ri, xh)

2. Learning of ABM '

(sec. 4.1) Learning of ABM with NN
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1. Formulation of ABM §Eaam
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Conceptual animal behavioral model (not numerically computable)
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Lit1 = fU(fN(rt:mt)u fulri, ), vy, ;) + €
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(computable and k=1
interpretable) Sign of GC (navigation) positive weights of GC
e.g., attraction and (motion)
repulsion

It is closely related to self-explanatory NN [Alvarez-Melis & Jaakkola, 18] (sec. 3.3)



2. Learning of ABM

p
Learn ¥y . using MLP z, =y W, hi ,+el

Loss function
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(i) prediction loss (i) sparsity-inducing (iii) theory-guided (iv) smoothing
penalty term regularization term penalty term
Concatenated weight matrix Theory-guided weight

['«I’Bt s lII‘,_,_]rf 1] [lp&; . lI;;”H] (given in the next slide)



3. Theory-guided regularization

We estimate reliable GC by regularization using known scientific knowledge
[Karpatne+ 17] (mainly studied on physical principles)

* Our basic idea: we utilize theory-based and data-driven prediction
results and impose penalties in the appropriate situations

1. let X; be the prediction from the data

2. prepare some input-output pairs ( X;_,<¢ X; ) based on scientific
knowledge
* assume that the weight ¥/ is uniquely determined
* this assumption reduces the possible pairs ( X;_j<¢, X )

3. When X; and X;are similar, impose penalties on the weights such that
the cause of X, (i.e., ¥;) is similar to the cause of %, (i.e., ¥/ ).
*  we assume that the cause of X;is equivalent to the cause of X; at the time

Here we utilize the only intuitive prior knowledge such that the agents go
straight from the current state if there are no interactions



4. Inference of Granger Causality

| e e e Vet
Recent definition of GC [Tank+18]:  xi. Mﬁwﬁf\bwmﬂﬂmf\j
A variable x* does not Granger-cause L
variable x/, denoted as x! » x/, if and

only if the prediction model of x/ is xf wﬂf\v"uﬁﬁﬂ/ f"ﬁu\i\/\/M “\

constantin x%, . -

(Wlklpedla)
d: output dim.
We here consider GC using the obtained W, , ; € RE>dXdr 5 - input dim,

In the following equation: for each agent
(e.g., 2D or 3D)

S0 = signmase | median (%,50) | max (11 (%), )
- u=1,....d

signmax: sign of the larger value of max and min (e.g., signmax({1, 2, -3}) = -1)
| (®;,;),, IF is the Frobenius norm of the matrix (¥; ), , € R

We consider S; ;; = 0 to be non-causal relationships and S; ; > 0 if x* — x/



Experiments (1) Kuramoto model (synthetic data)

do; .
Ku ramoto mod.el =i+ 3 ki sin(é; — o;)
(nonlinear oscillators) ' j#ix
unknown causal relationship
Experimental results
Kuramoto model
Acc. Bal. Acc. AUROC AUPRC
Linear GC 0.655 £ 0.099 0.500 £ 0.000 0.546 & 0.139 0.431 £+ 0.143
Local TE 0.335 +0.107 0.483 +0.050 0.489 +0.054 0.351 £0.104
[Khanna+19]  ¢SRU [30] 0.500 =0.092 0.500 = 0.000 0.487 = 0.123 0.548 = 0.121
[Lowe+20] ACD [42] 0475 +£0.121 0528 £0.115 0.605 +0.135 0.519+0.184
[Marcinkevics+20] GVAR [44] | 0.495 +0.154 0473 £0.113 0.467 £0.079 0.398 £ 0.115
W/O regularization ABM = ﬁTG 0.930:}2 0.075 0.914 :i: 0-086 0.972 :I: 0.036 0.929 :i: 0-093
ABM (full) | 0.925 +£0.075 0.902 +0.098 0.972 + 0.036 0.929 + 0.093

Although we used the dictionary of the functions with prior knowledge,

our method accurately detected the causality w/o theory-guided regularization



Experiments (2) Boid model (synthetic data)

has only three rules: attraction,
repulsion, and alignment

Here we set the boids directed
preferences: true relations 1, 0,
and -1 as attraction, no

Boid model = o

interaction, and repulsion

[Couzin et al. 2002]
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e.g., #1 attracts #5 (+1)
and is avoid by #3 (-1)

Experimental results: both learning of sign and TG regularization were needed

Boid model
Bal. Acc. AUPRC BA, 0. BA pcq

Linear GC 0.487 +=0.028 0.591 £0.169 0.55 +0.150 0.530 £ 0.165

Local TE 0.634 = 0.130 0.580 £ 0.141 N/A N/A
[Khanna+19] Ry [30] 0.500 + 0.000 0452+ 0.166 0.495+0.102 0.508 = 0.153

[Lowe+20] ACD [42] 0.411 =0.099 0.497 £+ 0.199 N/A N/A
[Marcinkevics+20] GVAR [44] 0.441 £ 0.090 0327 £0.119 0.524 +£0.199 0.579 £ 0.126
ABM - Fy - Ly | 0.500 = 0.021 0417 £0.115 0513 £ 0.096 0.619 £+ 0.157
w/o learning of sign ABM - Fy 0.542 £ 0.063 0.385 +0.122 0.544 +0.160 0.508 + 0.147
w/o regularization ABM - L7 0.683 +£0.124 0.638 £0.096 0.716 4+ 0.172  0.700 + 0.143

ABM (ours)

0.767 = 0.146

0.819 + 0.126

0.724 + 0.189

0.760 + 0.160




Experiments (2) an example of results in boid model :
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Experiments (3) real-world mice data
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Raised in different cage

mice, Frame 1 (30Hz)
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Our method extracted a larger

duration in the different cage than
that in the same, whereas GVAR
did too much interaction.

Our methods characterized the

duration [sec]

movement behaviors before the

contacts with others [Thanos+17]
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(birds, bats, and flies
are in our paper)
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Conclusion

* We propose a framework for learning Granger causality via ABM,
which can extract interaction rules from real-world multi-agent and
multi-dimensional trajectory data

 We realized the theory-guided regularization for reliable biological
behavioral modeling, which can leverage scientific knowledge such
that “when this situation occurs, it would be like this”

* Biologically, we reformulate a well-known conceptual behavioral
model, which did not have a numerically computable form, such
that we can compute and quantitatively evaluate it

 Our method achieved better performance than various baselines
using synthetic datasets, and obtained new biological insights using
multiple datasets of mice, birds, bats, and flies
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