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Multi-agent movement sequences

Extracting the interaction rules of biological agents from 
movement sequences pose challenges in various domains
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Other: pedestrians, vehicles …..

Discovering the directed interaction will contribute to the 
understanding of the principles of biological agents' behaviors

Humans (in basketball)Animals (bats)



Granger causality (GC) and problems

Granger causality [Granger, 1969] is a practical framework for 
exploratory analysis in various fields

• Recently: inferring GC under nonlinear dynamics [Tank+18; Khanna+19]

Problem: the structure of the generative process in biological multi-
agent trajectories, which include time-varying dynamical systems, is not 
fully utilized in existing base models of GC (e.g., VAR and NN)

1. Ignoring the structures of such processes will lead to interpretational 
problems and sometimes erroneous assessments of causality

solution: incorporating the structures into the base model for inferring GC, 
e.g., augmenting (inherently) incomplete behavioral models with 
interpretable data-driven models, can solve these problems

2. Data-driven models sometimes detect false causality that is 
counterintuitive to the user of the analysis

solution: introducing architectures and regularization to utilize scientific 
knowledge will be effective for a reliable base model of a GC method
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Overview of our method
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Conceptual animal behavioral model

Learning of ABM with NN

inferring time-varying GC

1. Formulation of augmented 
behavioral model (ABM) (sec. 3.2)

2. Learning of ABM
(sec. 4.1)

4. Inference of Granger 
causality (sec. 4.3)

3. Theory-guided
regularization (sec. 4.2)

(sec. is the reference to our paper)



1. Formulation of ABM
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[Nathan et al. PNAS, 2008]

Conceptual animal behavioral model (not numerically computable)

Sign of GC (navigation)
e.g., attraction and
repulsion

positive weights of GC 
(motion)

Augmented 
Behavioral model
(computable and 
interpretable) 

concatenated

It is closely related to self-explanatory NN [Alvarez-Melis & Jaakkola, 18] (sec. 3.3) 



2. Learning of ABM
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(i) prediction loss (iii) theory-guided 
regularization term

(iv) smoothing 
penalty term 

Theory-guided weight
(given in the next slide)

Concatenated weight matrix

Loss function

(ii) sparsity-inducing 
penalty term  

Learn           using MLP

where 



3. Theory-guided regularization

We estimate reliable GC by regularization using known scientific knowledge 
[Karpatne+ 17] (mainly studied on physical principles) 

• Our basic idea: we utilize theory-based and data-driven prediction 
results and impose penalties in the appropriate situations

1. let ෝ𝒙𝑡 be the prediction from the data

2. prepare some input-output pairs （ ෥𝒙𝑡−𝑘≤𝑡 , ෥𝒙𝑡 ） based on scientific 
knowledge

• assume that the weight 𝚿𝑡
𝑇𝐺 is uniquely determined

• this assumption reduces the possible pairs （ ෥𝒙𝑡−𝑘≤𝑡, ෥𝒙𝑡 ）

3. When ෝ𝒙𝑡 and ෥𝒙𝑡are similar, impose penalties on the weights such that 
the cause of ෝ𝒙𝑡(i.e., 𝚿𝑡) is similar to the cause of ෥𝒙𝑡 (i.e., 𝚿𝑡

𝑇𝐺).

• we assume that the cause of ෝ𝒙𝑡is equivalent to the cause of ෥𝒙𝑡 at the time

Here we utilize the only intuitive prior knowledge such that the agents go 
straight from the current state if there are no interactions
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4. Inference of Granger Causality

Recent definition of GC [Tank+18]:

A variable 𝑥𝑖 does not Granger-cause 
variable 𝑥𝑗, denoted as 𝑥𝑖 ↛ 𝑥𝑗, if and 
only if the prediction model of 𝑥𝑗 is 

constant in 𝑥≤𝑡
𝑖 .
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(Wikipedia)

𝑥𝑖

𝑥𝑗

We here consider GC using the obtained
In the following equation: 

We consider 𝑆𝑖,𝑗,𝑡 ≈ 0 to be non-causal relationships and 𝑆𝑖,𝑗,𝑡 ≫ 0 if 𝑥𝑖 → 𝑥𝑗

𝑑: output dim.
𝑑𝑟: input dim. 
for each agent
(e.g., 2D or 3D)

signmax: sign of the larger value of max and min (e.g., signmax({1, 2, −3}) = −1)
is the Frobenius norm of the matrix 



Experiments (1) Kuramoto model (synthetic data)

Although we used the dictionary of the functions with prior knowledge,

our method accurately detected the causality w/o theory-guided regularization  
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Kuramoto model
(nonlinear oscillators)

unknown causal relationship

[Khanna+19]

[Löwe+20]

[Marcinkevics+20]

Experimental results

w/o regularization
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Boid model 
[Couzin et al. 2002]

has only three rules: attraction,
repulsion, and alignment 

Experiments (2) Boid model (synthetic data)

[Khanna+19]

[Löwe+20]

[Marcinkevics+20]

w/o regularization
w/o learning of sign

Here we set the boids directed 
preferences: true relations 1, 0, 
and −1 as attraction, no 
interaction, and repulsion

Experimental results: both learning of sign and TG regularization were needed

e.g., #1 attracts #5 (+1)
and is avoid by #3 (-1)
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positive: attraction

negative: repulsion

Experiments (2) an example of results in boid model

e.g., #1 is avoid by #3 (-1)
and attracts #5 (+1)

correct

correct

correct

false
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Raised in different cage

(30 Hz for 5 min)
positive: attraction

negative: repulsion

Experiments (3) real-world mice data

Raised in the same cage

• Our method extracted a larger 
duration in the different cage than 
that in the same, whereas GVAR 
did too much interaction. 

• Our methods characterized the 
movement behaviors before the 
contacts with others [Thanos+17] 

(birds, bats, and flies
are in our paper)



Conclusion

• We propose a framework for learning Granger causality via ABM, 
which can extract interaction rules from real-world multi-agent and 
multi-dimensional trajectory data

• We realized the theory-guided regularization for reliable biological 
behavioral modeling, which can leverage scientific knowledge such 
that “when this situation occurs, it would be like this”

• Biologically, we reformulate a well-known conceptual behavioral 
model, which did not have a numerically computable form, such 
that we can compute and quantitatively evaluate it

• Our method achieved better performance than various baselines 
using synthetic datasets, and obtained new biological insights using 
multiple datasets of mice, birds, bats, and flies
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