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Background & Motivation

* Rule-based models still play an important role in domains demanding high
model interpretability, such as medicine, finance, and politics.

* Transparent inner structures
* Good model expressivity o

Medicine Finance Politics

* However, conventional rule-based models are hard to optimize, especially
on large data sets, due to their discrete parameters and structures, which

limits their application scope.

if male and adult then survival probability 21% (19%—-23%)

() = o(Wyx +by)

Ise if 3rd class then survival probability 44% (38%—-51%)
else if 1st class then survival probability 96% (92%—-99%)
else survival probability 88% (82%—-94%)
(%) 1-pi(x)
Rule List tree T ' l
if ( sunny and hot ) or ( cloudy and hot ) p() o(Wyx +b,) ps(x) = o(Wsx + bs)
or ( sunny and thirsty and bored )
or ( bored and tired ) or (thirty and tired ) 1= py(®)
or ( code running ) or ( friends away and bored ) 1-p,(0) Ps(x) Ps
or (sunny a dwa t to swim ) or ( just feel like it )
[ Rupi(1-12) ] [ Ry, (1= p)ps ] [Rar(l’l’l)(l’lls)]

then go to beach
else work

Rule Set

Conventional Rule-based Models Ensemble Methods Soft/fuzzy Rules



Background & Motivation

* Rule-based models still play an important role in domains demanding high
model interpretability, such as medicine, finance, and politics.

Transparent inner structures "
Good model expressivity
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How to improve the scalability of rule-based
models while keeping their interpretability?
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Rule-based Representation Learner

A Rule-based Representation Learner (RRL) is a hierarchical model consisting of
three different types of layers. Each layer in RRL has trainable edges connected
with its previous layer.
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Figure: A Rule-based Representation Learner example. The
dashed box shows an example of a discrete logical layer and its
corresponding rules.
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more complex forms, e.g., CNF or DNF rules

Iy =4y
P = =D A ugl—l)

A

Sél) _ ugl—l) v uél—l) v ugl—l) Binarization Layer

ng) _ ungl)

__________________________

T —
Continuous Input C;  Binary Input B;

Figure: A Rule-based Representation Learner example. The
dashed box shows an example of a discrete logical layer and its
corresponding rules.



Rule-based Representation Learner
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Logical Layer

* One logical layer consists of one conjunction layer and one disjunction layer.

* One node corresponds to one logical operator.
* Nodes in conjunction layer: AND
* Nodes in disjunction layer: OR

* To learn data representations using logical rules automatically, logical layers
are designed to have a discrete version and a continuous version. These two
versions share the same parameters.

Discrete Training

Version

Testing

Continuous

version Interpretation




Logical Layer

 Discrete Version L.

. L . . o A Discrete Logical Layer Example:.
* Edge connections indicate which variables will involve the
logical operation.

* Let ri(l) and Sl-(l) denote the i-th node in conjunction and

disjunction layer, respectively. W& and WD gre the
adjacency matrices.

Logical Layer

LISV

/1T X

ug)l—l) ugl—l) uél—l) (I-1)

us
) (1—1) 0 (1—1) Corresponding Rules:
i = /\ u 5 = \/ u; MO
(1,0) _ (1,1) _ _ _
Wi,j =1 Wm. =1 rgz) :u(()z 1)Au§l 1)
S(()l) _ ugz—n v u;z—n v u:(%l—l)
* Although the discrete logical layers have good st =~V |

Interpretability, they are hard to train for their discrete
parameters and non-differentiable structures.



Logical Layer

* Continuous Version

* The continuous version Is differentiable, and when we discretize the parameters of a
continuous logical layer, we can obtain its corresponding discrete logical layer.

* To achieve this, it need to:

0/ 1 discrete vall_Je ~
adjacency matrix

: : logical activation
logical operations L s ogical activatio
functions

[0, 1] real value
weight matrix

* The logical activation functions proposed by Payani and Fekri(2019) are:

£+ = Conja—1, W) HF T W(l O))

s = Digi(at=) WD) = 1 - T - Fa(al=, w0

g=1



Improved Logical Activation Functions

* However, these logical activation functions suffer from the serious vanishing
gradient problem.

* Using the multiplications to simulate the logical operations is the main
reason for vanishing gradients.

FC(.) E [O, 1]
(9f'(l) S0-1) (z 1) (z 0) /
o = -0 TR )
k7J
o8t

~(I—1) (I—1) (l 1)
o177 D -4 H(l — Fy(ay, W ))\
,J k#j

Fq(-) € [0,1]
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Improved Logical Activation Functions

* One straightforward idea Is to convert multiplications into additions using

logarithm.
log(] [ Fe(hy, Wi ;) = log(F.(h;, Wi ;) x
=1 j=1

J

* However, after taking the logarithm, the logical activation functions cannot
keep the characteristics of logical operations any more.



Improved Logical Activation Functions

* We need a projection function g(x) to fix it, and three conditions must be
satisflied:

ex

« () g(0) = e (i) lim g(x) = lim e* (i) lim =0

X——00 x——00 g(x) B

* We choose g(x) = , and the improvement

-1
—1+log(v)

—1+x
can be summarized as P(v) =

* Now, the improved logical activation functions are:

n

Conj (b, W) = P(] [ (Fe(hy, Wi )+e)) e e 2

j=1 Figure: y = %—T—x and y = e*

—.

Disj, (h, W;) = 1-P(] | (1—Fa(h;, W, ;)+e))

71=1



Binarization Layer

* By combining one binarization layer and one logical layer, we can automatically
choose the appropriate bins for feature discretization (binarization), 1.e., binarizing
features in an end-to-end way.

* For the j-th continuous feature to be binarized, there are k lower bounds
(75,1, T2, -, Jj ) and k upper bounds (H; 1, Hj 2, ..., Hj k).

* The output is Q;, and q(x) = 1,50
* Qi =Ilalcj = Tj1) - a(e = Tix) a(Hja — ), -y a(Hje — )]

O ® O

Figure: The visualization of k lower and k upper bounds.
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Binarization Layer

* By combining one binarization layer and one logical layer, we can automatically
choose the appropriate bins for feature discretization (binarization), 1.e., binarizing
features in an end-to-end way.

* For the j-th continuous feature to be binarized, there are k lower bounds
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* The output is Q;, and q(x) = 1,50
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The visualization of k lower and k upper bounds. The bounds selected by a disjunction node.



Gradient Grafting

* Although RRL can be differentiable with the continuous logical layers, it is
challenging to search for a discrete solution in a continuous space.

* The gradients of RRL at discrete points have no useful information in most cases.

* Inspired by plant grafting, we propose a new training method, called Gradient
Grafting, that can effectively train RRLT Forward —>

Backward - -»

Loss(-)
[ % Scion
! Ti
Discrete Continuous
Model Model _ ~
: gL _ gt 77zm(_Y) oY
q(*) | oy 00!
I ;
: _ : Figure: A simplified computation graph of Gradient Grafting.
Figure: A plant grafting example Arrows with solid lines represent forward pass while arrows ROOtStOCk

(Chen et al., 2019). with dashed lines represent backpropagation. The green
arrow denotes the grafted gradient, a copy of the gradient
represented by the red arrow.



Model Interpretation

* After training with Gradient Grafting, the discrete RRL can be used for testing
and interpretation.

* RRL Is easy to Interpret, for we can simply T
consider It as: Linear T
Classifier
* A feature learner

a Logical Layer
| Conjunction Layer | Disjunction Layer |

* A linear classifier

* |t Is easy to obtain a trade-off between the

- : Feature Logical Layer
classification accuracy and model Learner | |[ Goncton Layer | bisinction Layer |
complexity of RRL.

* The number of logical layers \ Binarization Layer
T —

* The number of nodes in each logical layer
* The L1/L2 regularization

Continuous Input C;  Binary Input B;

Figure: RRL can be simply considered as a feature
learner and a linear classifier.



Experiments

* We conduct experiments to evaluate the proposed model and answer the
following questions:

* How are the classification performance and model complexity of RRL?

* How Is the convergence of Gradient Grafting compared to other methods?
* How Is the scalability of the improved logical activation functions?

e Data set Table: Data sets properties.
R We tOOk nine Sma” and four |arge pUblIC Dataset #instances #classes #features feature type density
. adult 32561 2 14 mixed
datasets to conduct our experiments. bank-marketing 45211 2 16 mixed
. . . banknote 1372 2 4 continuous -
* Together they show the data diversity, ranging chess 28056 8 6 discrete  0.150
. . connect-4 67557 3 42 discrete 0.333
from 178 to 102944 instances letRecog 20000 26 16 continuous ;
* from 2 to 26 classes dcnetoe 958 2 o “lheree 033
* from 4 to 4714 original features wine ok 3 13 continuous -
activity 10299 6 561 continuous -
dota2 102944 2 116 discrete 0.087
facebook 22470 4 4714 discrete 0.003
fashion 70000 4 784 continuous -




Classification Performance

* We compare the classification F1 score (Macro) of RRL with six interpretable
models and five complex models.

Table: 5-fold cross validated F1 score (%) of comparing models on all 13 datasets.

Dataset | RRL C45 CART SBRL CORESL CRS LR | SVM PLNN(MLP) RF LightGBM XGBoost
adult 80.72 77777 77.06  79.88 70.56 80.95 7843 | 63.63 73.55 79.22 80.36 80.64
bank-marketing | 76.32* 71.24 7138  72.67 66.86 73.34  69.81 | 66.78 72.40 72.67 75.28 74.71
banknote 100.00* 98.45 97.85 9444 98.49 9493 98.82 | 100.00 100.00 99.40 99.48 99.55
chess 7883 7990 79.15 26.44 24.86 80.21 33.06 | 79.58 77.85 75.00 80.58 80.66
connect-4 71.23*  61.66 61.24 4854 51.72 65.88 49.87 | 69.85 64.55 62.72 70.53 70.65
letRecog 96.15* 8820 87.62 64.32 61.13 84.96 72.05 | 95.57 92.34 96.59 96.51 96.38
magic04 86.33* 8244 81.20 82.52 77.37 80.87 75.72 | 79.43 83.07 86.48 86.67 86.69
tic-tac-toe 100.00 91.70 9421  98.39 98.92 99.77 98.12 | 98.07 98.26 98.37 99.89 99.89
wine 98.23 9548 9439 95.84 97.43 97.78 95.16 | 96.05 76.07 98.31 98.44 97.78
activity 98.17 9424 9335 11.34 51.61 5.05 9847 | 98.67 98.27 97.80 99.41 99.38
dota2 60.12* 5208 5191 34.83 46.21 5631 5934 | 57.76 59.46 57.39 58.81 58.53
facebook 90.27* 80.76  81.50  31.16 34.93 11.38 88.62 | 87.20 89.43 87.49 85.87 88.90
fashion 89.01*  80.49 79.61 47.38 38.06 66.92 84.53 | 84.46 89.36 88.35 89.91 89.82

AvgRank | 2.77 8.23 8.92 9.31 9.92 7.08 792 | 6.77 5.77 5.38 277 2.69
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* We compare the classification F1 score (Macro) of RRL with six interpretable
models and five complex models.

Table: 5-fold cross validated F1 score (%) of comparing models on all 13 datasets.
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adult 80.72 | 7777 T77.06  79.88 70.56 80.95 7843 | 63.63 73.55 79.22 80.36 80.64
bank-marketing | 76.32* | 71.24 7138  72.67 66.86 73.34  69.81 | 66.78 72.40 72.67 75.28 74.71
banknote 100.00* | 98.45 97.85 94.44 98.49 94.93 98.82 | 100.00 100.00 99.40 99.48 99.55
chess 78.83 17990 79.15 26.44 24.86 80.21 33.06 | 79.58 77.85 75.00 80.58 80.66
connect-4 71.23* | 61.66 61.24 48.54 51.72 65.88 49.87 | 69.85 64.55 62.72 70.53 70.65
letRecog 96.15* | 88.20 87.62 64.32 61.13 84.96 72.05 | 95.57 92.34 96.59 96.51 96.38
magic04 86.33* | 82.44 81.20 82.52 77.37 80.87 75.72 | 79.43 83.07 86.48 86.67 86.69
tic-tac-toe 100.00 | 91.70 94.21  98.39 98.92 99.77 98.12 | 98.07 98.26 98.37 99.89 99.89
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AvgRank | 2.77 8.23 8.92 9.31 9.92 7.08 792 | 6.77 5.77 5.38 277 2.69

S

RRL performs well on both small
and large data sets.
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* We compare the classification F1 score (Macro) of RRL with six interpretable
models and five complex models.

Table: 5-fold cross validated F1 score (%) of comparing models on all 13 datasets.
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-

RRL has a better performance
than other interpretable models.
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* We compare the classification F1 score (Macro) of RRL with six interpretable
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Only two complex models that 7

use hundreds of estimators have
comparable results with RRL.



Model Complexity

* Interpretable models seek to keep low model complexity while ensuring high
accuracy.

* To show the relationships between classification performance and model
complexity of RRL and baselines, we draw scatter plots of F1 score against
log(#edges) for rule-based models.

bank-marketing dota?2 facebook

/7.3 601 90 o
75.0; o® A N B 30, v °
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L 20.0 ¥ E o v v v
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575! ¥w ~@- RRL 3519 ¢ ~@- RRL 101 ~@- RRL
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Figure: Scatter plot of F1 score against log(#edges) for RRL and baselines on three datasets



Ablation Study

* Training Method for Discrete Model

* We compare Gradient Grafting with other representative gradient-based discrete model
training methods, i.e., STE, ProxQuant, and RB, by training RRL with the same structure.

* Improved Logical Activation Functions
* We also compare RRL with or without improved logical activation functions.
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Figure: Training loss of three compared discrete model training methods and Gradient Grafting
with or without improved logical activation functions on three data sets.



Case Study

* Weight Distribution

* We show the distribution of weights in the linear layer of the RRLs trained on the bank-
marketing data set.

* Learned Rules

* The learned rules, with high weights, of one RRL trained on the bank-marketing data set.
* Provide intuition for image classification tasks by visualizations of learned rules.
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Figure: The distribution of weights in the linear layer

of RRLs with the same model structure but different A.

Weight Rule

0.995 -122.5 < balance < 2606.1 A marital = married A campaign <5 A poutcome = success A previous > 0
0.753 1757.2 < balance < 7016.7 A marital = married A contact = telephone A 6 < day < 27 A previous <5
0.733 age > 36 A balance < 7016.7 A marital = married A campaign < 5 A pdays < 104 A poutcome = success
0.731 36 < age < 60 A balance > -122.5 A campaign < 7 A day > 22 A pdays > 304 A previous >0

0.728 age > 28 A -669.1 < balance < 5813.7 A campaign < 6 A pdays > 304 A 0 < previous < 6

Figure: Logical rules obtained from RRL trained on the bank-
marketing data set.

T-shirt/top Pullover Dress Sneaker Ankle boot

Figure: Decision mode for the fashion data set summarized
from rules of RRL.



Conclusion & Future Work

* We propose a new scalable classitier, named Rule-based Representation
Learner (RRL), that can automatically learn interpretable rules for data
representation and classification.

* For the particularity of RRL, we propose a new gradient-based discrete
model training method, i.e., Gradient Grafting, that directly optimizes the
discrete model.

* We also propose an improved design of logical activation functions to
Increase the scalability of RRL and make RRL capable of discretizing the
continuous features end-to-end.

* Our experimental results show that RRL enjoys both high classitfication
performance and low model complexity on data sets with different scales.

* For the current design of RRL is limited to structured data, we will extend RRL
to suit more unstructured data as future work.
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