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Real-world problems are often high-stakes.
Evaluate a policy’s performance before deployment 
(off-policy).
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Goal

Given:  Trajectories collected using 
one or multiple past (behavior) 
policies.

Aim: Evaluate and bound the 
desired performance metric (mean, 
variance, CVaR, etc.) of the return 
distribution under a new policy, 
using the given trajectories.
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Goal

Assumptions

- Any outcome under the 
evaluation policy is possible 
under the behavior policy 
(support assumption)

- Knowledge of action 
probabilities under the 
behavior policy
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Prior work

- Model-based
- Additional requirement for estimating reward distribution for each state-action pair
- Hard to estimate accurate models in non-tabular settings

- Typical IS based estimators
- Only corrects for the mean

- Distributional RL
- On-policy



A Universal Evaluation Procedure  
- Off-policy

- Model-free

- Different performance metrics (Estimation + High-confidence bounds) 
- Mean,
- VaR, CVaR,
- Variance, Entropy,
- Median, Inter-quantiles
- Etc.

- Different domain settings
- Markovian, Non-Markovian
- Fully observable, Partially-observable
- Smoothly non-stationary, discrete distribution shifts



Core Idea

- If we have an estimator for the CDF then we can obtain an estimator for any 
of its parameters

- Bounds for the CDF can directly be used to obtain bounds on its parameters
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Estimates for Different Parameters

Mean estimate exactly equal to the common (trajectory-based) IS estimate.
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- Mean
- Quantile
- CVaR
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- Entropy
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- ….

- Estimates for different parameters 
might be biased

- Importance sampling results in high 
variance

- Need to obtain high-confidence 
bounds with guaranteed coverage 
for reliability.
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- Approximate
- Significantly Tighter

Bootstrap
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Extensions
- Weighted IS based UnO for variance reduction*
- UnO for partially observable MDPs*
- UnO for discrete distributional shifts*
- UnO for smooth non-stationarities*

- Parallel work at NeurIPS’21 by Audrey et al. [1] provides uniform 
convergence rates for off-policy CDF and Lipschitz risk functionals.

*see our paper for more details.

[1] Huang, Audrey, Liu Leqi, Zachary C. Lipton, and Kamyar Azizzadenesheli. "Off-Policy Risk 
Assessment in Contextual Bandits." NeurIPS 2021.






