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Contributions

1 We propose an exact finite-runtime algorithm for implementing the
exponential mechanism with exact ε-DP guarantees using atomic
regeneration.

2 We show that our proposed algorithm relies on the confidential data to
avoid the worst-case mixing times found in distance convergence
arguments.

3 We derive two modifications of the previous algorithm that demonstrate a
new three way trade-off between, privacy, utility, and runtime.

Jeremy Seeman, Matthew Reimherr, and Aleksandra Slavkovic Exact Sampling from Exponential Mechanisms



3/15

Differential privacy

Notation: 
X ,: sample space of 1 individual’s data

(Y,F) , output space

M , {µX | X ∈ X n} release mechanism

Differential privacy (Dwork et al, 2006)

A mechanism M satisfies (ε, δ)-DP if, for all B ∈ F and adjacent X ,X ′ ∈ X n:

µX (B) ≤ eεµX ′(B) + δ.

When δ = 0, we say a mechanism satisfies ε-DP.
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Private selection and the exponential mechanism

Private selection:

Goal: minimize loss function LX while satisfying ε-DP

LX : X n × Y 7→ [0,∞]

Key ingredient: bounded sensitivity of LX . For all adjacent X ,X ′ ∈ X n:

|LX (y)− LX ′(y)| ≤ ∆L <∞.

Exponential mechanism (McSherry and Talwar, 2007)

A sample from density fX with the form:

fX (y) ∝ exp

(
−εLX (y)

2∆L

)
,

with respect to a common base measure ν(y) over (Y,F) satisfies ε-DP.
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Problem: intractable distributions

Many generic ε-DP algorithms are not exactly implementable!

Why can’t we just use MCMC?

MCMC approximation has a privacy cost

Heuristic MCMC convergence measures tell us nothing about said cost

Approximation δ cost (Li et al, 2016)

A sequence of mechanisms Mm , {µm,X | x ∈ X} approximating the

exponential mechanism,Mm, as m ≥ τ(α) is (ε, δα)-DP where δα , α(1 + eε) if

τ(α) , sup
X∈X n

inf{t ≥ 0 | ‖µt,X − µX‖TV ≤ α}.
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Existing work

Current approach: bounding distributional distances between the MCMC
approximation and the target distribution (ex: Ganesh and Talwar, 2020)

Problems with existing approaches:

Asymptotic rates can’t be used to calculate finite-chain privacy loss

Need to bound distances for worst-case slowest mixing chains

Methods don’t exactly satisfy ε-DP
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Proposed alternative: perfect sampling

For a Markov chain with stationary distribution µX and transition kernel ΠX :

Associate with each state a binary indicator ρ ∈ {0, 1} indicating
regeneration (i.e. return to the same state)

Let {τ}∞t=1 be the sequence of regeneration times for the MC (i.e. time
between states when ρ = 1)

Each τt is IID (can drop t index) =⇒ µX has an infinite mixture form:

µX (A) =
∞∑

m=1

P(τ ≥ m)

E[τ ]
P(Ym ∈ A | τ ≥ m).

(Lee et al, 2014) show that if the regeneration state is a singleton atom, then
we can sample from µX using Bernoulli factories (Huber, 2013).
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Our proposal: confidential artificial atoms

Implementation choices specific to DP:

Choose an artifical confidential atom a ∈ Y from the set of confidential
results (i.e. what we would release without privacy preservation)

a ∈ arg inf
y∈Y

LX (y).

First sample from µ̃X , where:

µ̃X = (1− k)µX + kξa,

then condition on Y 6= a to sample from µX .

Assumptions about the state space (such as compact X n) help to satisfy our
privacy AND our sampling assumptions
Many different possible choices for chain modification (ex: Brockwell and
Kadane, 2005)
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Result: modified MH for exponential mechanism

Theorem: modified Metropolis-Hastings perfect sampling for privacy

Let ΠX be the transition kernel for a Metropolis-Hastings Markov Chain with
symmetric proposals q. We can construct a Markov chain on the extended
space with proposals:

q̃(y , y ′) =
1

2

[
qX (y , y ′) + 1{y ′=a}

]
,

And an algorithm to sample from density fX that satisfies ε-DP with expected
number of total proposed samples Nprop:

E[Nprop] ≤ 48

k2(1− k)2 infy∈Y pAccept(y)
,

where:

pAccept(y) ,
∫
Y
qX (y , y ′) min

{
1,

fX (y ′)

fX (y)

}
dν(y ′).

Jeremy Seeman, Matthew Reimherr, and Aleksandra Slavkovic Exact Sampling from Exponential Mechanisms



10/15

Example: d-dimensional Laplace mechanism in hypercube

Key property

MCMC methods require accounting for the slowest mixing chain, but our
method can be much faster because the runtime depends on the realized
confidential data

Illustrative example: Laplace mechanism (LX (y) =
∥∥X − y

∥∥
1
) with data

bounded in [0, 1]d

Two original Markov chains: Metropolis-Hastings (MH) with independent
uniform proposals and symmetric Laplace proposals with scale α

Closed form expressions for worst-case δ with MH MCMC (Mengersen and
Tweedie, 1996)

‖µX ,m − µX‖TV ≤ (1− βMCMC)m, (1){
βMCMC,Unif ,

(
2d
εn (1− e−εn/2d)

)d
βMCMC,Lap , (2α)d exp

(
−
(
αd + εn

2

)) (
1
α (1− e−α)

)d
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Example: d-dimensional Laplace mechanism in hypercube

(Dashed line = 64-bit double precision threshold)

a) Independent uniform proposals:

b) Symmetric Laplace proposals, scale = εn/2:
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Example: effect of central concentration

Continued example, but now with X ∼ Beta(θ, θ) with θ ∈ {.1, 1, 10} (Laplace
proposals), demonstrating dependence on X :
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Discussion

Benefits

Satisfies ε-DP
Runtime depends on realized confidential data, and not the confidential
data for the slowest-mixing Markov Chain
Only requires minorizing bound, and not properties of LX (i.e. convexity,
Lipschitz, etc.)

Limitations

Uniform ergodicity assumption: methods do not have finite expected
runtime for unbounded state spaces, like Rd .
Minorizing constant suffers from curse of dimensionality
Side-channel vulnerability: multiple replications of similar queries could leak
information about confidential data through runtime
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Extensions of main results

Traditional analysis: privacy vs. utility

Extensions of our work: privacy vs. utility vs. runtime

Trading off utility and runtime:

Exponential mechanisms can be implemented exactly over enumerable
discrete state spaces
=⇒ corollary: if we release a sample from a discrete approximation w.p. k,

then we reduce runtime at the cost of some utility

Trading off privacy and runtime:

(Awan and Rao, 2021) consider rejection sampling where Nprop is known
and can leak information
=⇒ corollary: with longer artificial runtime, can release Ñprop ⊥⊥ X with

0-DP so that (Y , Ñprop) is ε-DP
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Thanks!

Contact information: jhs5496@psu.edu

This work was sponsored by NSF SES-1853209. Thanks to Alexei Novikov and
Jordan Awan for helpful discussions!
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