

Vector-valued **Distance** and Gyrocalculus on the Space of SPD Matrices

Federico López Beatrice Pozzetti Steve Trettel Michael Strube Anna Wienhard

SPD Matrices FTW!

- SPDs have been used for:
 - Pedestrian detection
 - Action and face recognition
 - Image classification
 - Visual tracking
 - Medical image analysis
- They capture statistical notions
 - Gaussian distributions
 - Covariance
- Convenient trade-off between structural richness and computational tractability

Previous Work

To operate with SPD matrices, previous work:

- Maps matrices to vectors
- Projects points into their tangent space
- Embedding the manifold into high-dimensional Hilbert spaces

These methods **distort the geometrical structure** of the manifold

Previous Work

- Several distances proposed
 - Affine invariant metric
 - Stein metric
 - Bures-Wasserstein metric
 - Log-Euclidean Metric

They do not fully exploit the representational power of SPD

- Growing need to generalize basic operations into the SPD space
 - Hard to translate operations given the lack of closed-form expressions

We Propose!

- Vector-valued distance function in SPD
 - Compute only one vector and derive multiple distances
 - Much more information than just the distance
 - Analysis and visualization tool

- Gyrocalculus on SPD
 - Arithmetic operations in the space
 - Addition
 - Scaling
 - Rotations
 - Reflections

The Space SPD

- Points are positive definite real symmetric **n** × **n** matrices
- SPD_n: Riemannian manifold of non-positive curvature of n(n + 1)/2 dimensions
 - n-dimensional Euclidean subspaces
 - n-1 dimensional hyperbolic subspaces
 - $\circ \lfloor \frac{n}{2} \rfloor$ hyperbolic planes
- They combine hyperbolic and Euclidean geometry thus they can accommodate:
 - Hierarchical structures -> hyperbolic subspaces
 - Flat structures -> Euclidean subspaces

Vector-valued Distance Function

• In Euclidean or hyperbolic spaces the only invariant of two points is their distance

 In the SPD_n space the invariant between two points is an n-dims distance vector

• To assign this vector we employ the vector-valued distance (VVD) function:

 $d_{vv}: \text{ SPD}_n \times \text{SPD}_n \to \mathbb{R}^n$ $d_{vv}(P,Q) = \log(\lambda_1(P^{-1}Q), \dots, \lambda_n(P^{-1}Q))$

Advantages of the VVD

- By taking different norms on the VVD we can compute **several metrics**
 - Riemannian distance
 - Finsler distances
 - Generalize previous metrics "One vector to rule them all"
- VVD provides much more information than just the distance
 - Read the regularity of the geodesics joining two points
 - Visualize and analyze high-dimensional embeddings

$$d^{R}(Z_{1}, Z_{2}) := \sqrt{\sum_{i=1}^{n} v_{i}^{2}}$$

$$\longrightarrow$$

 $d^{F1}(Z_1, Z_2) := \sum_{i=1}^n v_i$

 $d^{F^{\infty}}(Z_1, Z_2) := \max\{v_i\}$

Gyrocalculus

• It is an algebraic formalisms to translate Euclidean operations to other spaces in a geometrically meaningful way

- Successful applications with Hyperbolic geometry [Ganea et al, 2018]
 - Addition
 - Matrix-vector multiplication
 - Pointwise non-linearities

Gyrocalculus in SPD

Scalar multiplication

 Addition / subtraction

$$P \oplus Q = \sqrt{P}Q\sqrt{P}$$
$$\Theta P = P^{-1}$$

 $\alpha \otimes P = P^{\alpha} = \exp(\alpha \log(P))$

P

• Matrix scaling $A\otimes P=\exp(A\odot\log(P))$

Isometries

• We also provide a way to learn rotations and reflections in SPD

• Rotations
$$\operatorname{Rot}(\vec{\theta}) = \prod_{i < j} R_{ij}^+(\theta_{ij})$$

• Reflections

$$\operatorname{Refl}(\vec{\theta}) = \prod_{i < j} R^{-}_{ij}(\theta_{ij})$$

Knowledge Graph Completion

• Operations

Ο

$$\phi(h,r,t) = -d((\mathbf{M}_r \otimes \mathbf{H}) \oplus \mathbf{R}, \mathbf{T})^2 + b_h + b_t$$

• Rotations

Scaling

• Reflections

$$\phi(h,r,t) = -d((\mathbf{M}_r \odot \mathbf{H}) \oplus \mathbf{R}, \mathbf{T})^2 + b_h + b_t$$

- Distances
 - Riemannian
 - Finsler One
- Baselines: scaling, rotations and reflections
 - Euclidean space
 - Hyperbolic spaces
 - Complex space

Results for Knowledge Graph Completion

		WN18RR			FB15k-237				
Operation	Model	MRR	HR@1	HR@3	HR@10	MRR	HR@1	HR@3	HR@10
Scaling	MURE	47.5	43.6	48.7	55.4	33.6	24.5	37.0	52.1
	MURP	48.1	44.0	49.5	56.6	33.5	24.3	36.7	51.8
	$\mathrm{SPD}_{\mathrm{Sca}}^R$	48.1	43.1	50.1	57.6	34.5	25.1	38.0	53.5
	$\operatorname{SPD}_{\operatorname{Sca}}^{F_1}$	48.4	42.6	51.0	59.0	32.9	23.6	36.3	51.5

• SPD scaling **outperforms** Euclidean and hyperbolic models

Results for Knowledge Graph Completion

		WN18RR			FB15k-237				
Operation	Model	MRR	HR@1	HR@3	HR@10	MRR	HR@1	HR@3	HR@10
	MURE	47.5	43.6	48.7	55.4	33.6	24.5	37.0	52.1
Scaling	MURP	48.1	44.0	49.5	56.6	33.5	24.3	36.7	51.8
Scalling	$\mathrm{SPD}_{\mathrm{Sca}}^R$	48.1	43.1	50.1	57.6	34.5	25.1	38.0	53.5
	$\operatorname{SPD}_{\operatorname{Sca}}^{F_1}$	48.4	42.6	51.0	59.0	32.9	23.6	36.3	51.5
Rotations	RotC	47.6	42.8	49.2	57.1	33.8	24.1	37.5	53.3
	ROTE	49.4	44.6	51.2	58.5	34.6	25.1	38.1	53.8
	ROTH	49.6	44.9	51.4	58.6	34.4	24.6	38.0	53.5
	$\mathrm{SPD}^R_\mathrm{Rot}$	46.2	39.7	49.6	57.8	32.9	23.6	36.3	51.6
	$\mathrm{SPD}^{F_1}_\mathrm{Rot}$	40.9	30.5	48.2	57.3	32.1	22.9	35.4	50.5
Reflections	RefE	47.3	43.0	48.5	56.1	35.1	25.6	39.0	54.1
	REFH	46.1	40.4	48.5	56.8	34.6	25.2	38.3	53.6
	$\mathrm{SPD}_{\mathrm{Ref}}^R$	48.3	44.0	49.7	56.7	32.5	23.4	35.6	51.0
	$\operatorname{SPD}_{\operatorname{Ref}}^{F_1}$	48.7	44.3	50.1	57.4	31.6	22.5	34.6	50.0

- Competitive results for rotations and reflections with **significantly less dimensions**
- In many cases **Finsler one metric** outperforms the Riemannian distance

Visualization of Embeddings

- **Train**, **negative** and **validation** triples for WN18RR relationships
- Position of **validation** triples directly correlates with performance

Knowledge Graph-based Recommender Systems

• Recommendation problem as a link prediction task over users and items enhanced with side information

Results for KG Recommender Systems

	SOFTWARE		LUXURY		PANTRY		MINDREADER	
Model	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10
TRANSE	28.5 ± 0.1	47.2±0.5	35.6±0.1	52.3±0.1	16.6±0.0	35.3±0.1	19.1±0.4	37.6±0.1
ROTC	28.5 ± 0.3	45.4 ± 1.4	33.0 ± 0.1	49.8±0.2	14.5 ± 0.0	31.3 ± 0.2	25.3 ± 0.3	50.3 ± 0.6
MURE	29.4 ± 0.4	47.1 ± 0.4	35.6 ± 0.7	54.0 ± 0.3	19.4 ± 0.1	39.5 ± 0.2	25.2 ± 0.3	49.9 ± 0.6
MURP	29.6 ± 0.3	47.9 ± 0.3	37.5±0.1	55.2±0.3	19.4 ± 0.1	39.8 ± 0.2	25.3 ± 0.3	49.3±0.2
$\mathrm{SPD}_{\mathrm{Sca}}^R$	29.4 ± 0.4	48.1 ± 0.8	37.5±0.2	55.1±0.2	19.5 ± 0.0	39.6±0.3	$25.4{\pm}0.1$	49.8±0.3
$\mathrm{SPD}_{\mathrm{Sca}}^{F_1}$	28.8 ± 0.1	46.9 ± 0.5	37.3 ± 0.3	54.1±0.9	19.0 ± 0.1	38.8 ± 0.2	25.7±0.5	49.5±0.1
$\operatorname{SPD}_{\operatorname{Rot}}^R$	30.3±0.2	48.6±0.9	37.2 ± 0.1	54.8±0.4	20.0±0.1	40.3±0.1	25.3 ± 0.0	50.5±0.3
$\operatorname{SPD}_{\operatorname{Rot}}^{F_1}$	30.1 ± 0.1	49.1±0.3	36.9±0.1	54.5±0.6	19.2±0.0	39.3±0.1	25.7±0.0	49.5±0.2
$\mathrm{SPD}_{\mathrm{Ref}}^R$	29.6 ± 0.2	48.0 ± 0.5	37.3 ± 0.2	55.0 ± 0.2	19.3±0.0	39.7 ± 0.3	25.3 ± 0.0	49.1±0.1
$\operatorname{SPD}_{\operatorname{Ref}}^{F_1}$	29.3±0.1	47.5 ± 0.6	36.8 ± 0.0	$54.8 {\pm} 0.1$	18.6±0.2	38.3 ± 0.3	$24.8{\pm}0.2$	47.9±1.8

- SPD models tie or outperform baselines in all cases
- **Rotations**, both in Riemannian and Finsler metrics, seem to be the most effective operator

Linear Layers on SPD

- Linear layer: feature transformation + bias addition
 - Scaling
 - Rotation
 - Reflection
- Experiments on Question Answering
 - Training word embeddings on SPD
- Model
 - Model question/answer as word embeddings summation followed by a linear transformation
 - Rank question-answer similarity

$$\mathbf{Q} = T(\bigoplus_{i=1}^n t_i^q) \oplus B$$

$$sim(q, a) = -w_f d(\mathbf{Q}, \mathbf{A}) + w_b$$

 $u = Wr \perp h$

$$y = W \otimes x \oplus b$$

Results for Question Answering

	TRE	CQA	WikiQA			
Model	MRR	H@1	MRR	H@1		
Euclidean	55.9 ± 2.0	$41.0{\pm}2.0$	43.4 ± 0.3	22.4±1.1		
Hyperbolic	58.0 ± 1.3	$39.3 {\pm} 2.0$	44.0 ± 0.4	$22.8 {\pm} 0.6$		
$\mathrm{SPD}_{\mathrm{Sca}}^R$	$55.4 {\pm} 0.1$	37.1 ± 0.1	45.5±0.5	$24.4{\pm}1.1$		
$\operatorname{SPD}_{\operatorname{Sca}}^{F_1}$	57.1 ± 0.7	38.6 ± 0.2	$44.8 {\pm} 0.5$	$24.0 {\pm} 0.6$		
$\operatorname{SPD}^R_{\operatorname{Rot}}$	58.7 ± 1.5	$41.4{\pm}2.9$	$44.6 {\pm} 0.6$	$23.6 {\pm} 0.6$		
$\operatorname{SPD}_{\operatorname{Rot}}^{F_1}$	$58.1 {\pm} 0.5$	43.6 ±1.0	43.7 ± 0.4	23.8 ± 0.8		
$\mathrm{SPD}^{R}_{\mathrm{Ref}}$	57.3 ± 0.3	40.7 ± 1.1	$43.9 {\pm} 0.7$	23.4±2.0		
$\operatorname{SPD}_{\operatorname{Ref}}^{F_1}$	59.6±0.5	42.1 ± 1.0	44.7 ± 1.2	25.0±2.5		

- SPD models **outperform baselines** in all cases
- Embeddings in SPD manifolds exploited for downstream tasks
- We showcase how to build **linear layers on SPD**

Summary

- Growing need to **generalize tools** for SPD manifolds
- Introduce the **vector-valued distance for SPD**
 - Riemannian, Finsler and more distances
 - Visualization and analysis tools
- Gyrocalculus on SPD
 - Arithmetic operations that respect the geometry of the space
- Experiments on three tasks and eight datasets
 - **Versatility** of the approach for different types of data
 - Ease of integration with downstream tasks
 - Reflect the **superior expressivity** of SPD

