On UMAP's true loss function
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30 sec summary

Closed form formula for UMAP's true loss function.
Drastically reduced repulsion strength.
Explains why UMAP tends to over-contract embeddings.

Theoretically shows that the sophisticated UMAP
weights have no benefit.

This effect increases with the dataset size.
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Dimension Reduction

Given x1,...,xp € RP find layout ey, ..., e, € RY with d < D.
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Figure 1: Dimension reduction of the vectorized, unlabelled MNIST dataset
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UMAP artifacts

UMAP tends to produce crisp structures even if there is variation.

e Seam cell

(a) C. elegans (b) umapr (c) pca

Figure 2: Gene expression data of 86024 cells of C.elegans [1-2].

Picture from https://en.wikipedia.org/wiki/Caenorhabditis_elegans#/media/File:
Adult_Caenorhabditis_elegans. jpg
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e
UMAP artifacts

Over-contraction even if no dimension reduction necessary.

(a) original (b) umar

Figure 3: 3a 1000 points from a 2D ring. 3b 2D UMAP embedding.
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e
UMAP artifacts

The larger the dataset the stronger the over-contraction.

(a) Original (b) umar

Figure 4: 4a Five 2D rings with 1000 points. 4b 2D UMAP embedding.
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-
Overview UMAP [3]

k nearest neighbour graph of input data.

Input similarities p;; € [0, 1], non-zero only on kNN graph;
embedding similarities v;; = v(||e; — €j|).

Loss function

Lfel)=—2 X uylog(vy) + (1 - uy)log(d — vy).

1<i<j<n

= Minimum at vj; = pj;.
Optimization via negative sampling [4].
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Overview UMAP [3]

k nearest neighbour graph of input data.
Input similarities p;; € [0, 1], non-zero only on kNN graph;
embedding similarities v;; = v(||e; — €j|).
Loss function
L({e})=-2 > pjlog(vy) + (1 — pj)log(1l — vy).
1<i<j<n
= Minimum at vj; = pj;.
Optimization via negative sampling [4].
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-
Overview UMAP [3]

k nearest neighbour graph of input data.
Input similarities p;; € [0, 1], non-zero only on kNN graph;
embedding similarities v; = v(||e; — €j|).
Loss function
L{ei})=-2 > pijlog(vi) + (1 — pj)log(l — vj).
1<i<j<n
= Minimum at vj; = pj;.

Optimization via negative sampling [4].
= This changes the loss function! [5]

On UMAP's true loss function Sebastian Damrich NeurlPS 2021 9 of 19



-
Overview UMAP [3]

k nearest neighbour graph of input data.
bedding similarities o= +(ller—ert)-

Loss-funetion
Va8 AAY faY AN 1 [ AN A | AW | {1 \
L&is) = =4« 2 RBytoe\ly) (1 — Riy)tiogllt — V).
1<i<j<n

Optimization via negative sampling [4].
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UMAP’s true loss function

Theorem

The expected loss of UMAP'’s optimization procedure is

o (d, aF d)m
L==2 Z wij - log(vij) + —2nj -log(1 — vj)

1<i<j<n

with d; = 21'7:1 jj and m the number of negative samples.
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UMAP’s true loss function

Theorem

The expected loss of UMAP'’s optimization procedure is

- di+dj)m
L==2 Z u,-j-log(l/,-j)—i-i( 2nj) -log(1 — vj)

1<i<j<n

with d; = 21'7:1 jj and m the number of negative samples.

= Dramatically reduced repulsion as 1 — pj; = 1 for most jj.
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Difference between the loss functions
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Figure 5: Loss functions for the UMAP optimization on the C.elegans dataset.

= UMAP does not optimize its own loss function!
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Target similarities

Optimal embedding similarity of true loss function is binarized 1.

Y NU"’—M %]_If,uu>0

(a) original (b) umap

Figure 6: Since positive target similarities are close to one, UMAP embeddings tend to
be over-contracted. For more details see Figure 3.
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-
Dependence on dataset size

Binarization is stronger for larger dataset size n.

1y . . .
Y Mij‘f’% ~ 1if pj > 0.

(a) Original

(b) umar

Figure 7: The presence of additional rings decreases the repulsion further which leads
to stronger over-contraction. For more details see caption of Figure 4.
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Perturbed input similarities

Binarization renders exact value of input similarities unimportant.

(a) Original (b) kNN edge indicator (C) Inverted

Figure 8: UMAP visualizations of the C.elegans dataset are robust to severe
perturbations of the input similarities.
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Summary

m UMAP's sampling based optimization reduces repulsion.

m Input similarities are unimportant as they get binarized;
only the kNN graph matters.

m This explains over-contraction artifacts.

m More faithful interpretation of UMAP plots in various
domains.
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Thank you and
see you during the poster session!



