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Optimal transport problem: Wasserstein distance

Let µ, ν be two measures supported on Rd with finite moment of order 2,

Kantorovich’s problem

W2(µ, ν) =
(

min
π∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖2dπ(x, y)
)1/2

where Π(µ, ν) ={product measures with marginals µ and ν}.

Monge’s problem
If µ is absolutely continuous,

W2(µ, ν) =
(

min
T∈T(µ,ν)

∫
Rd

‖x− T (x)‖2dµ(x)
)1/2

with T(µ, ν) ={measurable functions T : Rd → Rd such that ν = T#µ}.
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Barycentric projection

For µ absolutely continuous,

W 2
2 (µ, ν) =

∫
‖x− T ∗(x)‖2dµ(x) =

∫∫
‖x− y‖2dπ∗(x, y), with π∗ = (id, T ∗)#µ.

And T ∗(x) =
∫
Rd

ydπ∗x(y), where π∗x is the disintegration of the transport plan π∗ ∈ Π(µ, ν) with

respect to the first marginal µ i.e.

π∗(dxdy) = π∗x(dy)µ(dx).

Barycentric projection

Sνµ(x) :=
∫
Rd

ydπµ,νx (y)

→ Which plan to choose for the construction?
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Optimal weak transport problem

Optimal weak transport [Gozlan, Roberto, Samson, Tetali (2017)]
Let µ, ν ∈ P2(Rd),

V (µ|ν) = inf
π∈Π(µ,ν)

∫
Rd

‖x−
∫
Rd

ydπx(y)︸ ︷︷ ︸
Sνµ(x)

‖2dµ(x)

Main advantages:
• The optimal plan π is unique for any distribution.
• Characterization via convex ordering [Gozlan and Juillet (2020)] and [Backhoff-Veraguas,
Beiglböck, Pammer (2019)]:

V (µ|ν) = inf
η6cν

W 2
2 (µ, η) = W 2

2 (µ, Sνµ#µ),

where η 6c ν stands for the convex ordering of measures: for any φ convex function,∫
φ dη 6

∫
φ dν.
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About the barycentric projection
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• SOT (x) =
∫
ydπOTx (y), with πOT optimal in the OT sense.

• SOWT (x) =
∫
ydπOWT

x (y), with πOWT optimal in the OWT sense.
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Wasserstein barycenters

Let ν1, . . . , νk ∈ P2(Rd) and λ1, . . . , λk weights in the simplex.

Wasserstein barycenter [Agueh and Carlier(2011)]

arg min
µ∈P2(Rd)

k∑
i=1

λiW
2
2 (µ, νi)

For distributions ν1, . . . , νk absolutely continuous such that ν1 has a bounded density

arg min
µ∈P2(Rd)

k∑
i=1

λiW
2
2 (µ, νi) = arg min

µ∈P2(Rd)

k∑
i=1

λi

∫
Rd

‖x− T νi
µ (x)‖2dµ(x),

where T νi
µ is optimal in the Monge problem and in particular T νi

µ #µ = νi, and the unique
barycenter∗ µ̃ verifies

µ̃ =

(
k∑
i=1

λiT
νi
µ̃

)
#µ̃,

∗Fixed point characterisation [Álvarez-Esteban, del Barrio, Cuesta-Albertos and Matrán (2016)] and [Zemel
and Panaretos (2019)]
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Our contribution : weak barycenters for probability measures

Weak barycenter

arg min
µ∈P2(Rd)

k∑
i=1

λiV (µ|νi)

For any distribution ν1, . . . , νk,

arg min
µ∈P2(Rd)

k∑
i=1

λiV (µ|νi) = arg min
µ∈P2(Rd)

k∑
i=1

λi

∫
Rd

‖x− Sνi
µ (x)‖2dµ(x),

where Sνi
µ is optimal in the weak problem, and and a weak barycenter µ̄ verifies

µ̄ =

(
k∑
i=1

λiS
νi
µ̄

)
#µ̄,
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Interpretation as a latent variable model

Theorem
Assume that µ is a weak barycenter of {νi}i=1,...,k, which is not a Dirac measure. Then, for each
i = 1, . . . , k, the random variable Yi ∼ νi can be realised as

Yi = X + (EYi + EX)︸ ︷︷ ︸
translation

+ Ȳi︸︷︷︸
idiosyncratic or cluster
specific component

where X ∼ µ and Ȳi = Yi − E(Yi|X).
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Figure: Left: Cytometry dataset for n = 15 patients and FSC vs. SSC cell’s marker. Right : The weak
barycenter (black) and the OT barycenter (red). The data are represented with the same axis as the figure
of barycenters. 8/13



Robustness to outliers

Yi = X + (EYi + EX)︸ ︷︷ ︸
translation

+ Ȳi︸︷︷︸
cluster specific
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Figure: Empirical Gaussian distributions and their OWT (black) and OT (red) barycenters for Gaussian
observations (crosses) and corrupted observations (dots).
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Algorithms for computing the weak barycenter problem

Iterative procedure

µn+1 = G(µn) with G(µ) =

(
k∑
i=1

λiS
νi
µ

)
#µ

where Sνi
µ =

∫
ydπµ,νi

x (y), with πµ,νi ∈ Π(µ, νi) achieving the minimum for the optimal weak

problem.

For a stream of data

Let µ0 ∈ P2(Rd), νk
i.i.d.∼ Q and γk > 0. We define the following iterative procedure for k > 0:

µk+1 =
[
(1− γk)id + γkS

νk

µk

]
#µk,

with
∑∞

k=1 γ
2
k <∞ and

∑∞
k=1 γk =∞.

Stochastic gradient descent in the classical Wasserstein setting: [Backhoff-Veraguas, Fontbona, Rios, Tobar
(2018)] and [Chewi, Maunu, Rigollet, Stromme (2020)].
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Spiral distributions
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Figure: Left: k = 10 distributions supported on spiral, each distribution consists of p random points, with
p randomly chosen in (200, 225). Right: Weak (black) and OT (red) barycenters.
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MNIST dataset
Prototype ”8” 1st noisy ”8” 2nd noisy ”8”

OWT
OT Regularised OT

Figure: Digit "8" from MNIST dataset. Top: (left) Prototype "8". (middle & right) Noisy versions of the
prototype by randomly (Bernoulli p = 0.1) moving pixels. Bottom: Comparison of three barycenters :
OWT plan (left), OT plan (middle) and entropy regularised OT plan for ε = 1 (right).
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Closing remarks

Conclusions
• Definition of a weak barycenter, that compiles the common geometric information of the
input distributions.
• Interpretation as a latent variable.
• Two algorithms for i) a fixed set of data and ii) streaming data.

Future work:
→ General conditions on the family of input measures for the existence of weak barycenters that

are not Dirac masses.
→ Conditions on input measures for a "maximal" weak barycenter (in terms of convex ordering)

to exist when d > 2, among all the solutions of the weak barycenter problem. When d = 1, a
maximal barycenter exists thanks to the complete lattice property of the set of probability
measures wrt the convex ordering.
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