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Background and Motivation

» Approximating family, divergence measure and
gradient estimators and their interplay play a key role in
variational inference

» The complexity of these interactions is aggravated for high
dimensional posteriors

» These components become even more critical when the
goal is to obtain accurate summaries of the posterior
itself

» The density ratio and its evaluation with MC draws is
the key object of interest
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Figure: Distance from the mode for draws of target and
approximations for different dimensions D = [2, 5,10, 50].
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Background and Motivation

» When the density ratio is heavy-tailed, even unbiased
estimators show a large bias (and large variance) in
practice.

» The density ratio is typically heavy-tailed when the typical
sets of the target and the approximation do not match.

» For commonly used sample size, the Monte Carlo average
is lower than true value with a high probability.

» In higher dimensions, even over-dispersed distributions
miss the typical set producing a highly skewed distribution
over density ratio.
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Conceptual framework

» Most common variational divergences can be expressed
as a function of the density ratio w(6) = p(¢, Y)/q(0) as an

f-divergence D¢(p||q) = Epq [f (pgig)ﬂ

» For instance, exclusive KL corresponds to choosing
f = —log(w).
> Reliable BBVI depends on the behavior of w(#) since
1. accurate optimization requires low-variance and (nearly)

unbiased gradient estimates a‘(A),
2. the qualitonf variational approximations requires accurate
estimates L(\) of variational divergences.
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Conceptual framework

» The tail distribution of w(0) is well approximated by a
general Pareto distribution with parameter k.

» |1/k| determines the number of finite moments of the
distribution.

> We can generalize this to the pre-asymptotic behaviour of
the gradient and function estimates G, L.

» Approximating their distributions with a generalized Pareto

k distribution tell us about their convergence issues in the
pre-asymptotic regime.

— E—
Aalto University Dhaka et al.
School of Science December 4, 2021
n

and Technology 6/11



Conceptual framework
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Figure: Results for correlated Gaussian targets of dimension
D =1,...,50 using exclusive or inclusive KL, and Chi? divergences
as the variational objective.
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Conceptual framework

1. Estimates and gradients of mode-seeking divergences (in
particular exclusive KL divergence with log dependence on
w) have lower variance and are less biased than those of
mass-covering divergences (in particular a-divergences
with a > 0, with polynomial dependence on w).

2. The degree of polynomial dependence on w determines
how rapidly the bias and variance will increase as
approximation accuracy degrades — in particular, in high
dimensions.

3. The k value can be used to diagnose pre-asymptotic
reliability of variational objectives. In particular, the
a-divergence with o > 0 will become unreliable when
max(1,a) x k > 0.7, even if w is bounded (by a very large
constant).
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Experiments on robust regression
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Figure: Maximum dimensionality converged per step size for the
robust regression model.
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Experiments on real world datasets
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Figure: Results for posteriordb experiments. (a) Pareto k values for
BBVI approximations. (b) Relative error of mean and covariance
estimates for BBVI using exclusive KL (circles) and after PSIS
correction (triangles).
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Conclusions

> Pareto k can be used as a reliable diagnostic that indicates
convergence issues/bad approximation.

» Mode-seeking divergences are in practice more stable to
optimize and lead to more reasonable results

» Mass-covering divergences do well in low dimensional
settings, but are too unstable for higher dimensional targets

» PSIS correction improves the estimation of many quantities
of interest, i.e. posterior summaries
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