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How does this field progress so far?

Let’s try to summarize
characteristics of existing research



Background

> Most of the current metrics mainly can only evaluate text from a limited number
of perspectives.

Fluency
Relevance
Coherence
Informativeness
Factuality

Semantic Coverage

Odododood

Adequacy

Perspectives



Background

> Most of the current metrics mainly can only evaluate text from a limited number
of perspectives.
o In practice, we need to use multiple metrics to evaluate different perspectives

Fluency
Relevance
Coherence
ROUGE

Informativeness

Factuality

Semantic Coverage

oo oodo

Adequacy

Perspectives



Background

> Most of the current metrics mainly can only evaluate text from a limited number
of perspectives.
o In practice, we need to use multiple metrics to evaluate different perspectives

Fluency
Relevance
Coherence
| FactCC
Informativeness
Factuality

Semantic Coverage

oo oodo

Adequacy

Perspectives



Background

> Most existing metrics only consider the relationship between
o  @Generated text <-> reference text OR
o  Generated text <-> source text
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Background

> Existing metrics only consider the relationship between (src, gen) or (src, ref)
o Unclear: how different choices of text combination influence different
evaluation perspectives?
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Background

> More and more metrics seek to take the advantage of pre-trained language
models.
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Background

> More and more metrics seek to take the advantage of pre-trained language
models.
o However, the PLMs’ parameters may not be fully utilized.
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Background

> Most of the metrics take evaluation as unsupervised matching, supervised
regression, or supervised ranking problems.
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B

ackeround

> Most of the metrics take evaluation as unsupervised matching, supervised
regression, or supervised ranking problems.
o SOTA generation systems are Seq2Seq models, why not using them?
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Background

> |Is there a metric that can

o flexibly model different relationships among (source, generated, reference)
texts

o support evaluation from multiple perspectives
o make full use of pre-trained models?
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Text Generation Evaluation as Text Generation

General Idea: S; 5

* models trained to convert the | |
generated text to/from a
reference output or the source
text will achieve higher scores
when the generated text is
better

YNNG\ B2,
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Benefits

[ Benefit 1: The different evaluation perspectives can be naturally supported.
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Benefits

[ Benefit 2: This new formulation can make full use of the parameters of PLMs.
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Benefits

[0 Benefit 3: Co-evolving of generation systems and evaluation metrics.

f\ Better systems will result in better

evaluation metrics.

Evaluation Generation

Metric

Better evaluation metrics will guide the
systems to become better.
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BARTScore Basics

BARTScore is used to get the generation probability from a source text X to a target
text YV (Note: the calculated scores are negative numbers)

m
BARTScore = z we log p (Ve ly<e, x, 0)
t=1
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BARTScore Basics

* We consider BARTScore variants from two dimensions:

o Fine-tuning: Change the parameters & of PLM by considering different
fine-tuning tasks to make the pre-training domain closer to the evaluation
domain.

o Prompting: Prompt the source text X or target text Y to better elicit
knowledge from PLMs.

m
BARTScore = Z we logp (v, |y-:, x, 0)
t=1
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Prometing

* Instead of adapting pre-trained LMs to downstream tasks via objective
engineering, downstream tasks are reformulated to look more like those solved
during the original LM pre-training with the help of a textual prompt.
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Prometing

* Instead of adapting pre-trained LMs to downstream tasks via objective
engineering, downstream tasks are reformulated to look more like those solved
during the original LM training with the help of a textual prompt.

o E.g.Sentiment Analysis
<A movie review> The review is .
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Prometing

* Instead of adapting pre-trained LMs to downstream tasks via objective
engineering, downstream tasks are reformulated to look more like those solved
during the original LM training with the help of a textual prompt.

o E.g.Sentiment Analysis
<A movie review> The review is .
o E.g. MT
English: | missed the bus today. French:
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Prometing

* Instead of adapting pre-trained LMs to downstream tasks via objective
engineering, downstream tasks are reformulated to look more like those solved

during the original LM pre-training with the help of a textual prompt.

e Better elicit knowledge from PLMs

25



Prometing

* Prompt Learning

{

Encoder —

I’'m happy today.

{

Today is a sunny day, I’'m very happy.

* Original
I’'m happy today.
f]
Encoder — Decoder
I
Today is a sunny day, I'm very happy. Score = -3

Final score = -3

Today is a sunny day, I’'m very happy.

Decoder
In summary, Score =-3
TL;DR, Score =-2
—2.5

(=3) +(=2) _

Final score =

2
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Prometing

* Original * Prompt Learning
Score = -2 In summary, I’'m happy today.
I’'m happy today. Score = -2 TL;DR, I’'m happy today.
Encoder ':> Decoder Encoder |:> Decoder
Today is a sunny day, I’'m very happy. Score = -3 Today is a sunny day, I’'m very happy.
. . (—2) + (—2)
Final score = -3 Final score = > = -2
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Exeeriments

2 S
C;(‘c’ Q,C{'\Qe 3’680(6
\° Machine Translation QQ}C’Q Coverage @ Pearson corr.
Data-to-text Coherence Spearman Cort.
Summarization Factuality Kendall’s Tau
Fluency
Informativeness
Relevance
Adequacy

3 tasks, 16 datasets, 7 perspectives
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Baseline Metrics

* We consider the following baseline metrics in our experiments.

ROUGE (1, 2, L)
BLEU

CHRF
BERTScore
MoverScore
PRISM

BLEURT
COMET

oooo0ooadod

29



Results: Machine Translation

average k-tau

0.35

0.30

0.25

0.20

unsupervised

F: Fine-tuning
P: Prompting

> Unsupervised SOTA

> |Improvements
through prompting
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Results: Summarization

average Spearman corr. * F: Fine-tuning
06 - ¢ P: Prompting
0.5
04 -

> Unsupervised SOTA
0.3 -

> Qutperform others by
0.2 - .
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Results: Data-to-text

average Spearman ColIT. e F: Fine—tuning

0.30

* P:Prompting

0.25

0.20

> SOTA

> Prompt helps
informativeness
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Fine-grained Analysis

* Prompt Analysis (Summarization & Data-to-text)

We first group all the evaluation perspectives into three categories:
1) semantic overlap (informativeness, pyramid score, and relevance)
2) linguistic quality (fluency, coherence)
3) factual correctness (factuality).
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Fine-grained Analysis

* Prompt Analysis (Summarization & Data-to-text)

SEM: Semantic Overlap
LIN: Linguistic Quality * Prompt helps semantic
FAC: Factual Correctness overlap

* Prompt effect on linguistic

100 :
il quality unclear
. 80 |
[=Y0)
£ 60 | * Prompt does not help
G) .
§ 40 | | factual correctness
20

SEM LN FAc
(c) Evaluation perspective



\ BARTScore: Evaluating Generated

ol Text as Text Generation

Demo: http://bartscore.sh/

Leaderboard: htto://explainaboard.nlpedia.ai/leaderboard/task-meval/

Code: https://github.com/neulab/BARTScore
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http://bartscore.sh/
http://explainaboard.nlpedia.ai/leaderboard/task-meval/
https://github.com/neulab/BARTScore

f BARTScore: Evaluating Generated
' Text as Text Generation

Thank you
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