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What is symbolic regression?

= Goal: Given a set of
observed data points,
reconstruct the exact
generating equation.

Input: Data points (X,y)
along unknown f(x)

= |s believed to be NP- - Output: Exact
Hard. However, a formal generating
proof does not exist. : expression f
: X + 1 - sin(x
= |s a special case of o0y e == E> (x)
Discrete Sequence 2x +/2
Optimization.
= An ideal use case is to
find the underlying law

and equation(s) that fit a
set of physical observed
data points.

Given a dataset (X,y), where each point X; € R"™ and y; € R, find a
mathematical expression f : R™ — R such that f(X;) = y;.
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] C. . Search space ~ | £|V
Discrete sequence optimization of. 10 atoms/universe

= Many problems fall into this category:

argmax |R(11,...,7,)] withm € L={a,05,...,(}

n<N,T1,...,Tn

“ Optimize a sequence of discrete tokens
under a black-box reward function. , ,

Neural architecture search Antibody design Symbollc regression

%7 }{é:;s‘t.'f;‘m;:\:‘)'i |
”‘ ‘ -‘,-L:é vy ‘\‘. \' / . .
' ‘\§ /?"\\';A ' _ x,..3 il
\\“\\v/ Y / fla)=e (cgs((;csss(lfl)(s) (gi)l)
L = {{ReLU, tanh},{32,64}} L = {ALA, ARG,...,vAL} L ={+,—, X, +,sin,x,...}
R = validation accuracy R = binding affinity R = —MSE

[Zoph et al. 2016]
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Representing an expression in a way we can use

An example expression in human
readable form.

The expression as a tree
representation that can be
easier to manipulate and
make changes to.

The expression in a form

the computer can :
S EEIE, U I [ div (add(x1l, sgrt (sub (pow(x3,cl),mul (x2,c2)))),mul (x1,c3))

readable.
The expression as a string of tokens we can

sequentially emit from a neural network or
t4,tl,x1,t5,t2,t6,x3,cl,t3,x2,c2,t3,x1,c3 manipulate using genetic programming.
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Genetic Programming Primer

= Create N random expressions : A population of individuals
— With a fixed probability, mutate a subset of the population.
* There are lots of different ways to mutate an individual.
— With a fixed probability, crossover (mate) a subset of the population.
— Select the best subset:
* A common way is via Tournament where we put three or more randomly
individuals together and take the best scoring individual and remove the others.
« Since crossover can increase population size, we can do tournament until the
population gets back to the original size.

— Repeat until convergence (or other criteria)

= There are lots of variations to how GP can be done.

= |t’s all a little bit hand wavy, but it works for many applications.
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Crossover Example

Expression 1

Expression 2




Crossover Example

Expression 1

Expression 2




Crossover Example

Expression 1




Crossover Example
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Mutation

Example (Shrink)

Expression 1

New Expression 1

2222222

National Nuclear Security



Mutation Example (Replace)

o e san @‘@
(e e ca

Ldv %@ o mul
New Expression 1 @ o @ @ Q




Genetic programming symbolic regression (GP)

A

Each individual is a different viable token string expression 5
t4rt11X1rt5,t2,t6,X3,C1,t3,X2,C2,t3,Xl,C3 = x1+ x3_4x2

2x1
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Tournament Selection

Randomly change
population. New Hall of Fame
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Return population for possible mutation and crossover.
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Deep symbolic regression (DSR)

Each sample is a different viable token string expression
X+ |xf — 4x,
td4,tl,x1,td5,t2,t6,x3,cl,t3,x2,c2,t3,x1,c3 >

A

2x1
Train to create . .
samples more .~ Estimate quantile R,
like the filtered / [ : .
best ones. 3 Filter top ¢
Sample N
RNN| [ > > (T e €7
9 ' @
, : 1 ~
Train on filtered batch:  Vy.J(0) ~ — > (R(r) - Rg) Ve log p(7]6)
€
Tel’

Lawrence Livermore National Laboratory N A‘S_{fg‘% 13

LLNL-PRES-827962



Combining Genetic Programming with Deep
Symbolic Regression

....................................................................................................................................................................

GP Hall of Fame Expressions
@ @ O

© 00 © mh
©0o00 _

3 Seed from RNN
00 00O i Combine

{ samples O O O @ samples.

-

Trarm

Draw n new
samples from RNN

Train on combined batch

1 + sin (x)

....................................................................................................................................................................
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Intuition

= GP may easily overshoot a solution since it has no
explicit distance update metric like DSR or other

gradient methods.
— This has an effect on GP somewhat akin to a Trust Region
approach.

= Random restart helps GP, but it would be better if
each time GP restarted a little closer to the target.
— Works best if solution is in one of many small gradient
basins contained inside a larger basin. DSR will follow the
large basin, but GP is better at finding the small basin.

= DSR is thus used to govern the distance GP travels
and keep it from straying too far from the likely
solution location.

= DSR itself is more likely to get stuck in local
minima. GP provides a greater ability for DSR to
break free.

= A colorful example might be a human (DSR)
walking a dog (GP) looking for something.
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Results on Nguyen benchmark

Experimental setup:
— Nguyen benchmarks

« Only 20 data points!
— Success = symbolic

Baselines:

— DSR: Deep symbolic regression
— PQT: Priority queue training

— VPG: “Vanilla” policy gradient
— GP: Genetic programming

[Petersen et al. 2021]
[Abolafia et al. 2018]
[Williams 1992]
[Koza 1992]

equivalence
— Eureqa: Commercial software [DataRobot, Inc.]
A~ Recovery rate (%)
Benchmark Expression Ours; DSR PQT VPG GP Eureqa
Nguyen-1 w3+ 1%+ 100 | 100 100 96 100 100
Nguyen-2 st a2t 100 | 100 99 47 97 100
Nguyen-3 w4ttt 100 | 100 86 4 100 95
Nguyen-4  a® 4+ + o+ + 02+ | 100 100 93 I 100 70
Nguyen-5 sin(?) cos(ar) — 1 100 | 72 73 5 45 73
Nguyen-6 sin(x) + sin(x + 2?) 100 100 98 100 91 100
Nguyen-7 log(x + 1) +log(x? + 1) 97 35 41 3 0 85
Nguyen-8 Vi 100 | 96 21 5 5 0
Nguyen-9 sin() + sin(y?) 100 100 100 100 100 100
Nguyen-10 2 sin(x) cos(y) 100 100 91 99 76 64
Nguyen-11 xY 100 100 100 100 7 100
Nguyen-12 xt — a3 + %yQ — 0 0 0 0 0 0
Average |91.4| 83.6 752 46.77 60.1 73.9
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Livermore benchmark set

Given token set: {+, —,X,=+, sin, cos, exp, log, x, y} find:
= A new hand made t p,log,x,y}

. Livermore-1 % + . + sin («?) U (—10.10,1000)

benchmark with 22 Livermore2  sin (%) cos (x) — 2 U(—1,1, QD)

. Livermore-3  sin («?) cos («%) — 1 U (—1,1,20)
new €qg uations. Livermore-4  log(x + 1) + log(x? 4+ 1) + log () U (0, 2, 20)
Livermore-5 % — a3 + 22 —y U (0,1.20)

Livermore-6 Adr* 4+ 33 + 202 4+ 1 U(—1.1.20

* Was created by US  Livermore7  sinn(s) L1 0)

. hi k Livermore-8  cosh(x) U (—1,1,20)

prior to this wor ) Livermore-9 2% + a8+ o7 +ab + v+t + a0 + 02+ 0 U (-1,1,20)
Li -10 Gsin (@ U (0,1,20

but has not yet been nggxn Lﬂlﬂn( ety U E—i 1 5)0)
_ oty 1

published. Livermore-12 2, [ (1,1, 50)
Livermore-13 '3 U (0,4, 20)

. Livermore-14 1% 4+ 22 + & + sin + sin (2 U(—1,1,20

" Is needed since Livermore-15 % ) U 504 20) |
Nguyen IS most|y Livermore-16 3 U (0,4, 20)
Livermore-17  4sin () cos (y) U (0,1,20)

too easy anymore. Livermore-18  sin («?) cos () — 5 U (—1,1.20)

Livermore-19 & + a% + 02 +u U (—1,1,20)

Livermore-20  exp (—;L‘Q) U(—1,1.20)

Livermore-21 2% + 2"+ 2% + > 4+ a2t + a2 + 2% + 1 U (—1,1,20)

Livermore-22  exp (—0. ’3&2) U (—1,1,20)
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Results on several benchmarks

Three benchmarks sets are used.

Shown is how often equations are recovered.

Each of 37 benchmarks is run 25 times for 2M evaluations.

GEGL is a method published at the time of this analysis. It’s similar enough, that we

had to add it to our comparison even though it was written for a molecular design task.

Recovery rate (%)

All Nguyen R Livermore
[ Ours 7492 9233 3333 7109 |
GEGL [Ahn et al., 2020] 64.11 86.00 33.33 56.36
Random Restart GP (i.e. GP only) 63.57 88.67 2.67 58.18
DSR (i.e. RNN only) [Petersen et al., 2021]  45.19 83.58 0.00 30.41
95% confidence interval +1.54 +£1.76 +£2.381 +1.32
= We can recover all but two benchmark equations.
Benchmark problems recovered
DSR Random Restart GP GEGL | Ours

Nguyen (12 possible) 11 11 11 12

R (3 possible) 0 2 | 3

Livermore (22 possible) 13 16 17 20

All (37 possible) 24 20 29 35
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Results on benchmarks with unknown constants

Jin benchmark [Jin et al. 2019] = Each result is taken from three

p— Mean RMSE )
Ours | DSR  BSR Recovered by Ours different runs of each
Jin-1 0 | 046 204 Yes benchmark
Jin-2 0 0 6.84 Yes
Jin-3 0 | 0.00052 0.21 Yes :
Jin-4 0 000014 0.16 Yes = There are 15 expressions.
Jin-5 0 0 0.66 Yes . . .
Tinsh 0 523 463 Yos — !}Ieat-G |§ tbhe Harrr|10tn||c series, so
it cannot be completely
Average 0 0.45 2.42
=7 Nt recovered.
Neat benchmark [Truijillo et al. 2016] — Neat-7 and Neat-8 require
P Median RMSE constant tokens to solve but are
Ours DSR  Neat-GP  Recovered by Ours not in the benchmark set They
Neat-1 0 0 0.0779 Yes
Neat-2 0 0 0.0576 Yes may not be solvable. ] )
ﬁear-i g 8-8(1);% 8-8322 ges — We solve all the expression which
eal- . b . 2 es
Neat.s 0 0 0,003 Yoo are known to be solvable.
Neat-6 | 6.1 x 1075 | 0.2378  0.2855 —
Neat-7 1.0028 1.0606  1.0541 — o i
Neat-8 0.0228 | 0.1076  0.1498 — Note we use median or mean
Neat-9 0 01511  0.1202 Yes RMSE as is the custom for each
Average | 0.1139 ) 0.1756  0.1977 benchmark.
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In conclusion

= The method is simple but seems very effective.
— Simple is better than complicated.

= More analysis is need to determine if our intuition for why it
works is in fact what is happening.

= Read our paper, see our poster.

= Download the source at:
https://github.com/brendenpetersen/deep-symbolic-
optimization
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https://github.com/brendenpetersen/deep-symbolic-optimization




