Symbolic Regression via Neural-Guided Genetic Programming Population Seeding

T. Nathan Mundhenk
Mikel Landajuela
Ruben Glatt
Claudio P. Santiago
Daniel M. Faissol
Brenden K. Petersen

What is symbolic regression?

- Goal: Given a set of observed data points, reconstruct the exact generating equation.
- Is believed to be NP-Hard. However, a formal proof does not exist.
- Is a special case of Discrete Sequence Optimization.
- An ideal use case is to find the underlying law and equation(s) that fit a set of physical observed data points.

Input: Data points (X,y) along unknown f(x)

Output: Exact generating expression *f*

$$\frac{x + \pi \cdot \sin(x)}{2x + \sqrt{2}}$$

Given a dataset (X, y), where each point $X_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$, find a mathematical expression $f : \mathbb{R}^n \to \mathbb{R}$ such that $f(X_i) \approx y_i$.

Discrete sequence optimization

Search space ~ $|\mathcal{L}|^N$

Many problems fall into this category:

$$\underset{n \leq N, \tau_1, \dots, \tau_n}{\operatorname{arg\,max}} \left[R(\tau_1, \dots, \tau_n) \right] \text{ with } \tau_i \in \mathcal{L} = \{\alpha, \beta, \dots, \zeta\}$$

66

Optimize a sequence of discrete tokens under a black-box reward function.

Neural architecture search

 $\mathcal{L} = \{\{\text{ReLU, tanh}\}, \{32, 64\}\}$

R = validation accuracy[Zoph et al. 2016]

Antibody design

$$\mathcal{L} = \{ \text{ALA, ARG, ..., VAL} \}$$
 $R = \text{binding affinity}$

Symbolic regression

$$\mathcal{L} = \{+, -, \times, \div, \sin, x, \dots\}$$

$$R = -MSE$$

Representing an expression in a way we can use

An example expression in human readable form.

$$y = \frac{x_1 + \sqrt{x_3^2 - 4x_2}}{2x_1}$$

The expression as a tree representation that can be easier to manipulate and make changes to.

The expression in a form the computer can execute, but is human readable.

 $\operatorname{div}(\operatorname{add}(x1,\operatorname{sqrt}(\operatorname{sub}(\operatorname{pow}(x3,\operatorname{c1}),\operatorname{mul}(x2,\operatorname{c2})))),\operatorname{mul}(x1,\operatorname{c3}))$

t4, t1, x1, t5, t2, t6, x3, c1, t3, x2, c2, t3, x1, c3

The expression as a string of tokens we can sequentially emit from a neural network or manipulate using genetic programming.

Genetic Programming Primer

- Create N random expressions : A population of individuals
 - With a fixed probability, mutate a subset of the population.
 - There are lots of different ways to mutate an individual.
 - With a fixed probability, crossover (mate) a subset of the population.
 - Select the best subset:
 - A common way is via Tournament where we put three or more randomly individuals together and take the best scoring individual and remove the others.
 - Since crossover can increase population size, we can do tournament until the population gets back to the original size.
 - Repeat until convergence (or other criteria)
- There are lots of variations to how GP can be done.
- It's all a little bit hand wavy, but it works for many applications.

Expression 2

Mutation Example (Shrink)

Mutation Example (Replace)

Genetic programming symbolic regression (GP)

Return population for possible mutation and crossover.

Deep symbolic regression (DSR)

Train on filtered batch:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{\varepsilon N} \sum_{\tau \in \Gamma} \left(R(\tau) - \tilde{R}_{\varepsilon} \right) \nabla_{\theta} \log p(\tau | \theta)$$

Combining Genetic Programming with Deep Symbolic Regression

Intuition

- GP may easily overshoot a solution since it has no explicit distance update metric like DSR or other gradient methods.
 - This has an effect on GP somewhat akin to a Trust Region approach.
- Random restart helps GP, but it would be better if each time GP restarted a little closer to the target.
 - Works best if solution is in one of many small gradient basins contained inside a larger basin. DSR will follow the large basin, but GP is better at finding the small basin.
- DSR is thus used to govern the distance GP travels and keep it from straying too far from the likely solution location.
- DSR itself is more likely to get stuck in local minima. GP provides a greater ability for DSR to break free.
- A colorful example might be a human (DSR) walking a dog (GP) looking for something.

Results on Nguyen benchmark

- Experimental setup:
 - Nguyen benchmarks
 - Only 20 data points!
 - Success = symbolic equivalence

- Baselines:
 - DSR: Deep symbolic regression
 - PQT: Priority queue training
 - VPG: "Vanilla" policy gradient
 - GP: Genetic programming
 - Eurega: Commercial software

[Petersen et al. 2021]

[Abolafia et al. 2018]

[Williams 1992]

[Koza 1992]

[DataRobot, Inc.]

		Recovery rate (%)					
Benchmark	Expression	Ours	DSR	PQT	VPG	GP	Eureqa
Nguyen-1	$x^3 + x^2 + x$	100	100	100	96	100	100
Nguyen-2	$x^4 + x^3 + x^2 + x$	100	100	99	47	97	100
Nguyen-3	$x^5 + x^4 + x^3 + x^2 + x$	100	100	86	4	100	95
Nguyen-4	$x^6 + x^5 + x^4 + x^3 + x^2 + x$	100	100	93	1	100	70
Nguyen-5	$\sin(x^2)\cos(x) - 1$	100	72	73	5	45	73
Nguyen-6	$\sin(x) + \sin(x + x^2)$	100	100	98	100	91	100
Nguyen-7	$\log(x+1) + \log(x^2+1)$	97	35	41	3	0	85
Nguyen-8	\sqrt{x}	100	96	21	5	5	0
Nguyen-9	$\sin(x) + \sin(y^2)$	100	100	100	100	100	100
Nguyen-10	$2\sin(x)\cos(y)$	100	100	91	99	76	64
Nguyen-11	x^y	100	100	100	100	7	100
Nguyen-12	$x^4 - x^3 + \frac{1}{2}y^2 - y$	0	O	0	0	0	0
	Average	91.4	83.6	75.2	46.7	60.1	73.9

Livermore benchmark set

- A new hand made benchmark with 22 new equations.
- Was created by us prior to this work, but has not yet been published.
- Is needed since Nguyen is mostly too easy anymore.

Given token set: $\{+, -, \times, \div, sin, cos, exp, log, x, y\}$ find:

Livermore-1	$\frac{1}{3} + x + \sin(x^2)$	U(-10, 10, 1000)
Livermore-2	$\sin\left(x^2\right)\cos\left(x\right) - 2$	U(-1,1,20)
Livermore-3	$\sin\left(x^3\right)\cos\left(x^2\right) - 1$	U(-1,1,20)
Livermore-4	$\log(x+1) + \log(x^2+1) + \log(x)$	U(0, 2, 20)
Livermore-5	$x^4 - x^3 + x^2 - y$	U(0, 1, 20)
Livermore-6	$4x^4 + 3x^3 + 2x^2 + x$	U(-1, 1, 20)
Livermore-7	$\sinh(x)$	U(-1, 1, 20)
Livermore-8	$\cosh(x)$	U(-1, 1, 20)
Livermore-9	$x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x$	U(-1, 1, 20)
Livermore-10	$6\sin(x)\cos(y)$	U(0, 1, 20)
Livermore-11	$\frac{x^2x^2}{x+y}$	$U\left(-1,1,50\right)$
Livermore-12	$ \frac{x^2 x^2}{x + y} \\ \frac{x^5}{y^3} \\ x^{\frac{1}{3}} $	U(-1, 1, 50)
Livermore-13	$x^{\frac{1}{3}}$	U(0,4,20)
Livermore-14	$x^3 + x^2 + x + \sin(x) + \sin(x^2)$	U(-1, 1, 20)
Livermore-15	$x^{\frac{1}{5}}$	U(0,4,20)
Livermore-16	$x^{\frac{2}{5}}$	U(0,4,20)
Livermore-17	$4\sin(x)\cos(y)$	U(0, 1, 20)
Livermore-18	$\sin\left(x^2\right)\cos\left(x\right) - 5$	U(-1,1,20)
Livermore-19	$x^5 + x^4 + x^2 + x$	U(-1,1,20)
Livermore-20	$\exp\left(-x^2\right)$	U(-1,1,20)
Livermore-21	$x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x$	U(-1, 1, 20)
Livermore-22	$\exp\left(-0.5x^2\right)$	U(-1, 1, 20)

Results on several benchmarks

- Each of 37 benchmarks is run 25 times for 2M evaluations.
- Three benchmarks sets are used.
- Shown is how often equations are recovered.
- GEGL is a method published at the time of this analysis. It's similar enough, that we
 had to add it to our comparison even though it was written for a molecular design task.

	Recovery rate (%)			
	All	Nguyen	R	Livermore
Ours	74.92	92.33	33.33	71.09
GEGL [Ahn et al., 2020]	64.11	86.00	33.33	56.36
Random Restart GP (i.e. GP only)	63.57	88.67	2.67	58.18
DSR (i.e. RNN only) [Petersen et al., 2021]	45.19	83.58	0.00	30.41
95% confidence interval	± 1.54	± 1.76	± 2.81	± 1.32

We can recover all but two benchmark equations.

	DSR	Benchmark problems i Random Restart GP		Ours
Nguyen (12 possible)	11	11	11	12
R (3 possible) Livermore (22 possible)	0 13	2 16	1 17	$\begin{bmatrix} 3 \\ 20 \end{bmatrix}$
All (37 possible)	24	29	29	35

Results on benchmarks with unknown constants

Jin benchmark [Jin et al. 2019]

		Mean RMSE					
	Ours	DSR	BSR	Recovered by Ours			
Jin-1	0	0.46	2.04	Yes			
Jin-2	0	0	6.84	Yes			
Jin-3	0	0.00052	0.21	Yes			
Jin-4	0	0.00014	0.16	Yes			
Jin-5	0	0	0.66	Yes			
Jin-6	0	2.23	4.63	Yes			
Average	0	0.45	2.42				

Neat benchmark [Trujillo et al. 2016]

		Me	dian RMSE	
	Ours	DSR	Neat-GP	Recovered by Ours
Neat-1	0	0	0.0779	Yes
Neat-2	0	0	0.0576	Yes
Neat-3	0	0.0041	0.0065	Yes
Neat-4	0	0.0189	0.0253	Yes
Neat-5	0	0	0.0023	Yes
Neat-6	$6.1 imes 10^{-6}$	0.2378	0.2855	_
Neat-7	1.0028	1.0606	1.0541	_
Neat-8	0.0228	0.1076	0.1498	_
Neat-9	0	0.1511	0.1202	Yes
Average	0.1139	0.1756	0.1977	

- Each result is taken from three different runs of each benchmark
- There are 15 expressions.
 - Neat-6 is the Harmonic series, so it cannot be completely recovered.
 - Neat-7 and Neat-8 require constant tokens to solve but are not in the benchmark set. They may not be solvable.
 - We solve all the expression which are known to be solvable.
- Note we use median or mean RMSE as is the custom for each benchmark.

In conclusion

- The method is simple but seems very effective.
 - Simple is better than complicated.
- More analysis is need to determine if our intuition for why it works is in fact what is happening.
- Read our paper, see our poster.
- Download the source at: <u>https://github.com/brendenpetersen/deep-symbolic-optimization</u>

