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Background: IV Regression

Estimate causal effect in confounded data.
y=f(x)+u, E(u|x)=0

= OLSisbiased: E(y | x)=f(x) . .



Background: IV Regression

Estimate causal effect in confounded data.
y=f(x)+u, E(u|x)=0

= OLS is biased: E(y | x) # f(x)

We may still be able to recover f, through the use of a
instruments.

E(f(x)-y | z) =0, as. [P(dz2)]



Background: IV Regression

Examples:

- Social sciences:
- x = education, y = return (e.g, future income), u = family socio-economic status; z:
#tsiblings, school lottery, etc.
- x = price; y = demand; u = market conditions (e.g., supply of substitute)
- Clinical research:

- x = treatment taken (w/ possible noncompliance); y = outcome;
z = treatment assigned

(CMR) can also emerge in other settings.



Background: IV Estimation

Estimation = find f st. E(f(X) -y|z) =0 =
1. Estimate the conditional expectation operator

E:H->17 hwEHhX)]2)

for some choices of K, J.

2. Find f by minimizing || Ef - E(y|2) || for some choice of || -



Background: IV Estimation

Estimation = find f st. E(f(X) -y|z) =0 =
1. Estimate the conditional expectation operator

E:H->17 hwEHhX)]2)

for some choices of J, J.
2. Find f by minimizing | Ef - E(y|z) || for some choice of || - ||.
Example: H := {linear models}, “two stage least squares”
1. Estimating E : h = E(h(x)]z) = h(OLS(x|z))
2. Minimizing ||Ef - E(y|z) ||L2 = [f(OLS(x]2)) - yll, = OLS(y | OLS(x|z))



Background: Nonlinear IV Estimation

For nonlinear f estimation is a lot harder
- We don't generally have E(f(x)|z) = f(E(x|2))

= Kernelize: RKHS for H,J, and kernel ridge regression for £



Background: Nonlinear IV Estimation

For nonlinear f estimation is a lot harder
- We don't generally have E(f(x)|z) = f(E(x|2))

= Kernelize: RKHS for H,J, and kernel ridge regression for £

. 2 -
Dual formulation: uses | - || := | - ||L2(f,(dz)) +7] - 113

Estimation becomes minimax optimization
n

minmax s 2 (2(7x) -y~ 902))a(a) - ¢°(2) - gl + AIF I

(Singh et al., 2019; Muandet et al., 2020; Dikkala et al,, 2020; Liao et al., 2020)



Nonlinear IV: Uncertainty Quantification?

NPIV is an ill-posed inverse problem. With less informative instruments convergence can
be extremely slow (Horowitz, 2011)
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Uncertainty quantification for IV?



Bayesian IV?

Requires knowledge of the full data generating process. Not in (CMR)

For the additive error model
x=g(z) +u, y=f(x)+u,
you can assume a Bayesian generative model on (u,, uy), and place priors on f,g. But

- Expensive and difficult to scale (BNP) /
Expensive, prone to approx. inference error & misspecification (DGM)

- Additive error is restrictive, and hard to check in high-d



Quasi-Bayesian Inference

Uses the Gibbs distribution
p(df) o< m(df) exp(-& 1 EF - E(y12) 1)

to quantify uncertainty. Trades off evidence and prior belief:

py = argmin,, [ nlEf - E(y12) I p(df) + AKL p |7



Quasi-Bayesian Inference

Uses the Gibbs distribution
P (df) o m(df) exp(-& I - E(y|2)11%)
to quantify uncertainty. Trades off evidence and
py = argmin,, [ nlEf - E(y12) I p(df) +

But

- Quasi-posterior depends on Ef. Evaluating Ef requires solving an optimization
problem, gradient computation will be harder

- Behavior of p, unclear, due to estimation error in 3

(Chernozhukov and Hong, 2003; Zhang, 2004; Kato, 2013)



Quasi-Bayesian Dual IV

Use GP(0,k,) as the prior M. Plug in the choice of || Ef - £(y|z) |1 from kernelized dual IV.

an(- | o)
) < e(-34,(0)

where

> (2000 -y, - 9(2))9(z) - 8°(2) - VI gl + AIf 5.



Computation: Closed-form Quasi-Posterior

n(f(x,) | o

) = N(K,, (A+ LK, )7'LY, K, —K_LOAI+K L)K.)
L=K,(K,+vI)™

Interpretations:

- Lf(X) = (Ef)(Z) projects functions of x.

- If zis uninformative and K,, := R,(Z,..... Z,..in) 1S lOW-rank, the variance explainable by
data will also have low rank.

- Marginal variance as worst-case prediction error



Computation: a Modified “Randomized Prior” Trick

Proposition: The stochastic optima of

. 1
min max —
feH geJ n :

n

(20f0) =y -2, -a(2))a(z) - a*(2))) = VIig = G, 15 +Alf = fo 150
=1
where é; ~ N(O,A),fo ~GP(0,R,), g, ~ ST(O,AV’%Z), distributes as the quasi-posterior.

Perturb the MAP estimator to draw posterior samples

Adaptable to wide neural networks

(Osband et al,, 2018; Pearce et al., 2020; He et al., 2020)



Theory: Consistency

Assume f, can be approximated by §P(0, k), J can approximate Ef for f € H well, and
k., R, are nice kernels. Then

1. Posterior assigns vanishing mass to functions violating (CMR):
PfD(n)”(”E(f_fo)”Lz(p(dz)) > 6n | D(n)) - 0, where 6n - 0.

2. Function(s) with comparable complexity satisfying (CMR) will eventually have similar
“density”.
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Theory: in extended arXiv version

Under additional assumptions comparable to the classical NPIV literature,
* Most importantly, f, is identifiable, and 3{ and E are in some sense compatible

we have, in L, and interpolation space (e.g., Sobolev) norms,

1. Posterior contracts at asymptotically optimal rates,

5 __ab_ b
PD(mﬂ(llf—fo 1L, (peayy.za,, > Mn bt ‘ Dm)) -0, ae [O' b +1>

2. Radii of the quasi-Bayesian credible balls have the correct order of magnitude.

arXiv:2106.08750v2


https://arxiv.org/abs/2106.08750

Simulation: 1D

Quasi-posterior using fixed-form kernels:
- Uncertainty estimates correctly reflect information available in data
- Particularly advantageous in the weak instrument setting
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(a) QB, N = 2000 (b) QB, N =200 (c) QB, weak IV (d) Bootstrap, weak IV
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Simulation: Run Time

N 10° 2x10°  10*

Proposed 0.07 0.16 0.43
BayeslV. 650 N/A  N/A

Table 1: Average time for a single run, in seconds. N/A: does not converge after 20min.

BayeslV is also relies on noise additivity, and thus suffers from misspecification in this
setting
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Simulation: Airline Demand

A hard setting studied in recent work; IVR with observed confounders

z = (ConsumerType, Time, FuelCost), — prediction , | T prediction
. ) 14 — actual —— actual
x = (ConsumerType, Time, Price),
Price = g(z) +u,, 0 01
Demand = f(x) +u,. 24
1

4 0 2 4 6 8 100 2 4 6 8 10
E(f(0) -y | 2) = 0 still holds. (a) low-dim x/z, n =1k (b) image x/z, n = 50k

(Hartford et al,, 2017)
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Thanks for Listening!

Extended version: https://arxiv.org/pdf/2106.08750

Code: https://github.com/meta-inf/gbdiv
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https://arxiv.org/pdf/2106.08750
https://github.com/meta-inf/qbdiv

