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Indoor Localization Problem

Camera-based system

http://svl.stanford.edu/igibson/

Localizing a person on the 2D map of a building

http://svl.stanford.edu/igibson/
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Indoor localization using RF signals (e.g. WiFi)

WiFi sensing

Play Video
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Assumptions

• Sequential data was recorded when the subject visited different locations in the environment 

• The 2D/3D map of the environment is given

• The training set includes the (zone-) room-level labels
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Overview of the proposed method

• Transporting the 2D representation into the floorplan (Ω𝑡)

• Estimating the geodesic distances between samples on the data manifold in input space (Ω𝑠)

• Training a neural network (𝜑) to map the input samples into their 2D intrinsic space (Ω𝑠)
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Spatio-temporal analysis

• Estimating the geodesic distances by computing the shortest path on the KNN graph

𝑡0𝑡1

𝑡𝑁
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𝐶3

𝐶1

• Detecting the KNN samples by minimizing the triplet margin loss
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Isometric embedding

Estimating the pushforward around each vertex in the graph

𝜑: ℝ𝑚 → ℝ𝑛 , 𝑚 > 𝑛

𝑑𝜑:  𝑇𝑥M → 𝑇𝜑(𝑥)
N, ℳ 𝑦𝑖 =

𝑑𝜑

𝑑𝑥
𝑥𝑖

𝑑𝜑

𝑑𝑥
𝑥𝑖

𝑇
†

The pushforward at the location of each sample is proportional to the covariance 

matrix of a Gaussian distribution, centered at that sample [Dsilva et al. 2015]
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Learning the isometric embedding

min 𝐷𝐾𝐿(𝐷𝑠||𝐷ℎ) , where 𝐷𝑠 , 𝐷ℎ ∈ ℝ𝑁𝑠×𝑁𝑠
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𝐷𝑠 ∶ Geodesic distance matrix of samples in ℝ
𝑀

𝐷ℎ ∶ Euclidean distance matrix of samples in ℝ
2

• Training a neural network (Φ) to map the input samples into their 2D intrinsic space (Ωℎ)
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Discrete Optimal Transportation using Sinkhorn Distance

𝑇

Ωℎ Ω𝑡

𝑇 𝐶, 𝑝, 𝑞 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑇, 𝐶
T ∈ 𝛾(𝑝, 𝑞)

−
1

𝜆
𝐻(𝑇) Sinkhorn divergence layer [Genevay et al., 2017]

• Optimal transportation is used for solving the correspondence problem between the intrinsic space 
and the given topological map 

Fixed-point Sinkhorn iterations:
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Jointly learning the embedding and transportation

(Densely) sampled 
points from Ω𝑡 ∈ ℝ2

Cost matrixdistance matrices 𝐷𝑠, 𝐷ℎ ∈ ℝ𝑁×𝑁
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Experiments

• Walking through a synthetic 2D Maze environment

Sampled patches Example of a trajectory
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Experiments

• Synthetic 2D Maze environment
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Experiments
• Camera-based localization

iGibson 3D dataset

http://svl.stanford.edu/igibson/

http://svl.stanford.edu/igibson/
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Experiments
• Camera-based localization

Embedding representation Ground-truth positions predictionTest trajectory
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Experiments
• Altering object appearance in the environment

Mean and standard deviation of error
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Demo of iGibson dataset

http://svl.stanford.edu/igibson/

http://svl.stanford.edu/igibson/
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Experiments

• Localization in WiFi

• Commercial IEEE 802.11 
access points (AP), 5GHz 
band

• Size of sensing environment 
14×20 meters

• Mean error: 1.2 m
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Summary

• We present a learning method for localization problem

• The proposed method is based on parametric manifold learning and optimal transportation

• Our method does not require the 2D coordinates of the moving target during training

• The proposed method does not make any assumption about the data modality in use and

in that sense, it is modality agnostic and can be applied on a large family of sensory

system.
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