

Coarse-to-fine Animal Pose and Shape Estimation

Chen Li, Gim Hee Lee National University of Singapore

Animal pose and shape estimation

• Goal: Estimate 3D animal pose and shape from a monocular image.

• Applications: zoology, ecology, farming and entertainment.

Animal pose and shape estimation: Existing works

Existing works are based on the SMAL.

- The low dimensional parameterization of SMAL makes it easier for deep networks to learn the high dimensional 3D meshes.
- The shape space of the SMAL is learned from 41 scans of toy animals, which limits the representation capacity.

Animal pose and shape estimation: Problem

Problem: The estimated 3D meshes do not match well with the 2D observations.

 Our solution: A two-stage approach combining parametric and non-parametric representations.

Coarse estimation stage: Regress SMAL parameters from input image.

Model parameter: $\Theta' = \{\beta', \theta', \gamma'\}$

Mesh vertices: $V_{
m c} = \mathcal{M}(eta', heta', \gamma')$

Camera parameter: f

Body joints: $J_{\mathrm{3D}} = \mathcal{W} \times V_{\mathrm{c}}$

Coarse estimation stage: Regress SMAL parameters from input image

Camera parameter: f

Mesh vertices: $V_{\rm c} = \mathcal{M}(\beta', \theta', \gamma')$

Body joints: $J_{\mathrm{3D}} = \mathcal{W} \times V_{\mathrm{c}}$.

2D keypoint based loss: $\mathcal{L}_{ ext{kp1}} = \|J_{2 ext{D}} - \Pi(J_{3 ext{D}}, f)\|^2$

2D silhouette based loss: L1 or L2 distance

The estimated shape tends to have a larger foreground area compared to GT.

The imbalance between foreground and background pixels in the input image.

• Tversky loss:
$$\mathcal{T}(P,G;\alpha,\beta) = \frac{|PG|}{(|PG| + \alpha|P\backslash G| + \beta|G\backslash P|)}$$

|PG|: Overlap pixels.

 $|P\backslash G|$: Background pixels that are predicted as foreground, namely false positive.

 $|G \setminus P|$: Foreground pixels that are predicted as background, namely false negative.

The estimated shape tends to have a larger foreground area compared to GT.

• The imbalance between foreground and background pixels in the input image

• Tversky loss:
$$\mathcal{T}(P,G;\alpha,\beta) = \frac{|PG|}{(|PG| + \alpha|P\backslash G| + \beta|G\backslash P|)}$$

 $|PG|\;$: True positive.

 $|P\backslash G|$: False positive.

 $|G\backslash P|$: False negative.

 $\alpha > \beta$ Penalize more on the false positive predictions.

2D supervision

Silhouette loss: $\mathcal{L}_{\text{silh1}} = 1 - \mathcal{T}(S, \mathcal{R}(V_c, f), \alpha, \beta)$

Keypoint loss: $\mathcal{L}_{\text{kp1}} = ||J_{\text{2D}} - \Pi(J_{\text{3D}}, f)||^2$

Prior $\mathcal{L}_{eta} = (eta' - \mu_{eta})^{ op} \Sigma_{eta}^{-1} (eta' - \mu_{eta}),$ $\mathcal{L}_{ heta} = (heta' - \mu_{ heta})^{ op} \Sigma_{ heta}^{-1} (heta' - \mu_{ heta})$

- Coarse stage loss function: $\mathcal{L}_{st1} = \lambda_{kp1}\mathcal{L}_{kp1} + \lambda_{silh1}\mathcal{L}_{silh1} + \lambda_{\beta}\mathcal{L}_{\beta} + \lambda_{\theta}\mathcal{L}_{\theta}$
- Pose limit constraint: enforce θ' to be in a valid range.

Our approach: Mesh refinement stage

 Mesh refinement stage: Use the coarse output as an initial point, and further refine it with a MRGCN.

- Encoder-decoder structure: Exploit features of different resolutions.
- Skip connections: Preserve the spatial information at each resolution.

Our approach: Mesh refinement stage

Mesh refinement stage: Refine the coarse shape with a MRGCN.

Combination of global and local features: Capture detailed shape information.

Our approach: Mesh refinement stage

- Mesh refinement stage: Refine the coarse shape with a MRGCN.
 - Per-vertex deformation $\Delta v_i = \mathcal{F}(\mathbf{h}_i^0)$, where $\mathbf{h}_i^0 = [\mathbf{h}_{\mathrm{g}}, \mathbf{h}_{\mathrm{l}}, x_i, y_i, z_i]$, $V_f = V_c + \Delta V$, where $\Delta V = [\Delta v_1, \Delta v_2,, \Delta v_C]$
 - Laplacian regularizer to prevent large deformations:

$$\mathcal{L}_{ ext{lap}} = \sum_i \|\delta v_i^f - \delta v_i^c\|^2, \quad ext{where} \quad \delta v_i = v_i - rac{1}{d_i} \sum_{j \in N(i)} v_j$$

Loss function for the refinement stage:

$$\mathcal{L}_{st2} = \lambda_{kp2}\mathcal{L}_{kp2} + \lambda_{silh2}\mathcal{L}_{silh2} + \lambda_{lap}\mathcal{L}_{lap}$$

Our approach: Experiments

- Training details:
 - Train the coarse estimation part with \mathcal{L}_{st1} (without \mathcal{L}_{silh1}) for 200 epochs.
 - Train the mesh refinement part with \mathcal{L}_{kp2} for 10 epochs.
 - Train the whole network with all losses for 200 epochs.

The silhouette loss can lead the network to unsatisfactory local minima if applied too early [3, 4].

[3] Benjamin Biggs, et al. Who left the dogs out?: 3D animal reconstruction with expectation maximization in the loop. ECCV 2020.

[4] Benjamin Biggs, et al. Creatures great and SMAL: Recovering the shape and motion of animals from video. ACCV 2018.

Our approach: Quantitative Results

- Evaluation matric: IOU for shape and PCK for pose.
- Results on the StanfordExtra dataset.

Method	Keypoints	Silhouette	IOU	PCK@0.15				
				Avg	Legs	Tail	Ears	Face
3D-M [32]	Pred	Pred	69.9	69.7	68.3	68.0	57.8	93.7
3D-M	GT	GT	71.0	75.6	74.2	89.5	60.7	98.6
3D-M	GT	Pred	70.7	75.5	74.1	88.1	60.2	98.7
3D-M	Pred	GT	70.5	70.3	69.0	69.4	58.5	94.0
CGAS [3]	CGAS	Pred	63.5	28.6	30.7	34.5	25.9	24.1
CGAS	CGAS	GT	64.2	28.2	30.1	33.4	26.3	24.5
WLDO [2]	-	-	74.2	78.8	76.4	63.9	78.1	92.1
Ours-coarse	-	-	72.5	77.0	75.9	55.3	76.1	89.8
Ours	-	-	81.6	83.4	81.9	63.7	84.4	94.4

Our approach: Quantitative Results

Results on the Animal Pose dataset

Method	Keypoints	Silhouette	IOU	PCK@0.15				
				Avg	Legs	Tail	Ears	Face
3D-M [32]	Pred	Pred	64.9	59.2	55.7	56.9	61.3	86.7
WLDO [2]		-	67.5	67.6	60.4	62.7	86.0	86.7
Ours-coarse	-	-	67.5	62.0	57.1	45.1	75.8	78.9
Ours	-	-	<i>75.7</i>	67.8	62.2	45.1	86.6	87.8

Results on the BADJA dataset

Method	IOU	PCK@0.15					
		Avg	Legs	Tail	Ears	Face	
WLDO [2]	65.0	48.6	40.4	78.2	55.2	76.5	
Ours-coarse	59.6	42.5	33.7	57.5	63.4	79.2	
Ours	72.0	54.1	47.6	76.1	66.2	74.4	

Our approach: Ablation studies

 Removing each component from the full model to evaluate the corresponding contribution.

Method	IOU	PCK@0.15						
		Avg	Legs	Tail	Ears	Face		
Full	81.6	83.4	81.9	63.7	84.4	94.4		
-MR	72.5	77.0	75.9	55.3	76.1	89.8		
-LF	73.3	76.9	76.1	57.0	75.1	89.1		
-ED	79.4	80.2	79.2	59.3	79.9	91.5		
-TL	81.1	82.5	81.0	65.2	82.9	92.8		

The performance drops when each component is removed from the full model.

Our approach: Qualitative results

Conclusion and future work

- We propose a coarse-to-fine approach, which combines SMAL-based and vertexbased representations.
- We design an encoder-decoder structured mesh refinement GCN, which combines image-level and vertex-level features to recover detailed shapes.
- Failure cases: camera looking at the back of the animal and extreme animal poses.

Thank you!

