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Multiclass Classification

e Answers an MCQ among L options (classes / labels)
* (Typically) solved using L binary classifiers w/ only
* Total probability of all classes sums to 1
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Multiclass Classification: Costs & Trade-offs

e Constant featurization costs
e Linear Classifier: R?*L — compute & memory scale as O(d * L)
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Multiclass Classification: Output Codes

* Typically, one-hot vector per class

* Very sparse; can we do better?
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Multiclass Classification: Output Codes

* Error Correcting Output Codes

* Codebook for classes (binary codes)
* Learn instance codes using codebook as a multi-label problem
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Output Codes: Shortcomings
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 Suffer from codebook collapse with most optimization techniques

* Inaccurate & often not tight - O(log L) with large constants

Can we learn accurate & tight output codes
without using any side information?



Key Obs.: Accurate Class Representations

* Classifier works great; ImageNet - 1000 (L) 2048-dim real vectors (R¢9)
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Low-dimensional Class Codes

* Linear classifier on low-dimensional space (R¥; k = log(L) < d)
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* Learn binarized (B**L) {0/-1, 1} version of the linear classifier
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* B(C) is the collection of class codes aka Codebook



The LLC Method

* Phase 1 — Codebook Learning
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* Phase 2 — Instance Code Learning
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LLC: Phase 1 — Codebook Learning

 Learnt end-to-end - F, P & B(C) - w/ Stochastic Gradient Descent (SGD)
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* Binarization is learnt through Straight Through Estimator (STE)



LLC: Phase 2 — Instance Code Learning

* Warm start w/ F, P: generate k =~ log(L) dim instance representation

e Columns of B(C) € B¥*L - target output labels per class B(Cy)
 Solve the multi-label problem as k binary classification problems
* Binarize the multi-label predictions to obtain instance codes (B)
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Heat Maps: Comparison for ImageNet-1K

* 20-bits produce a visually similar heat map as 2048-dim real numbers
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20-bit Codebook

Discovered Taxonomy

* Agglomerative clustering builds an intuitive hierarchy

e 20-bits capture important high-level semantic information
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Discovered Taxonomy for 50 classes of ImageNet-1K



LLC: Class & Instance Codes
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LLC: Decoding Schemes for Classification

Exact Decoding (ED):
* Instance code needs to exactly match the ground truth class code

B
. (©)
H —» Hash (Integer) | = | Inverse Lookup ‘ = | Class Label
Instance
Code Codebook

 Extremely efficient — Scales as O(k = log L) + O(1) hash lookup



LLC: Decoding Schemes for Classification

Minimum Hamming Decoding (MHD):
* Retrieves the closest class code for an instance code using Hamming distance
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e Efficient - Scales as O (k * L) instead of the typical O(d * L * 1)

r is the relative cost of real-valued compute over bits



LLC: Applications

e Efficient Multiclass Classification

* ImageNet-1K with 20 bits
* Multiple decoding schemes for compute and accuracy trade-offs

 Efficient Retrieval
* ImageNet-100 with 10 bits
* Potential for low-latency high recall retrieval in search systems

e Qut-of-Distribution (OOD) Detection
e Out-of-the-box without tuning for threshold



LLC: Image Classification for ImageNet-1K

 Comparison across 20-bit codebooks using ResNet50 backbone

Codebook # Unique ED MHD
Codes  Accuracy (%) Accuracy (%)
Random 1000 64.07 66.91
CCA 813 55.17 57.03
SVD 969 65.12 69.18
LLC (Ours) 1000 68.82 74.57

* LLC learns more accurate, tight & reliable codebooks

* ResNet50 with 2048-dim real representation + linear classifier: 77%



LLC: Image Classification for ImageNet-1K

e Classification accuracy vs. # bit codes for LLC on ResNet50 backbone

76

74

a@=ED
#»MHD

Accuracy
N N
o N

}

(o))
()]

20 25 30
# bits

'y
ol

* MHD accuracy ‘s gradually; but ED accuracy T's & /s
e LLC gets only 19.2 & 28.5 bits right for 20 & 30 bit models respectively



LLC: Image Retrieval for ImageNet-100

* Encode the image and database using instance binary codes
* For a query image, retrieve images of the same class

* MAP@1000 performance for retrieval using ResNet50 backbone

Representation 8 dims 10dims 64 dims
LLC (1-bit) - 64.07 67.73
Real (16-bits) 50.41 66.57 77.94




LLC: Image Retrieval for ImageNet-100

* MAP@1000 vs # bits comparison for retrieval using AlexNet backbone
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* Baselines are designed to learn only instance codes



LLC: Ablations

* Faster codebook learning

* Cheaper backbones; lesser data
 Warm start with collapsed SVD/CCA codebooks

* Linear vs. Homming separability
e LLC makes representation Hamming separable (hypercube)
 Hamming separability (more efficient) - Linear separability (more accurate)

* Train a 30-bit codebook, get 20-bit and 25-bit codebooks for free
* Extremely useful in deployment across various budgets without retraining



LLC: Are Learnt Codes Interpretable? NO!
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LLC: Conclusions

* First method to learn both class & instance codes simultaneously

* Learns semantically rich, highly accurate & tight binary codes reliably

* Enables applications like classification & retrieval in sub-linear costs

Future Work:
* Million-Billion scale classification & retrieval for search / instance classification

* Extremely efficient edge classifiers for tiny devices
* Cross-modal representation learning for interpretability in sub-linear costs
* Binary representations for various domains like videos, controls etc.,



