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Transformer-based image generation
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(d) the exact same cat on the
top as a sketch on the bottom

(b) DALLE[2]
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[2] Ramesh A, Pavlov M, Goh G, et al. Zero-shot text-to-image generation[J]. arXiv preprint arXiv:2102.12092, 2021.
[3] Esser P, Rombach R, Ommer B. Taming transformers for high-resolution image synthesis[C] CVPR, 2021.
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(B) Comparison of different generative modes

(A) Inputs and outputs of local generation compared with previous works



INntroduction

* Motivation:

* We propose an image local autoregressive (LA) transformer for local image
synthesis, which enjoys both semantically consistent and realistic generative
results.

* Two-stream convolutions and LA attention mask prevent both convolutions
and transformer from information leakage, thus improving the quality of
generated iImages.



Pipeline
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Two-stream convolution based VOGAN
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Local Autoregressive Mask
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Experiments

* Pose-guided generation of Penn Action (PA)
* Face-editing of Celeba-HQ and FFHQ

* Exploratory experiment: Synthetic DeepFashion (SDF) with complex
backgrounds from Places? for pose-guiding

Figure 2: The illustration of the SDF dataset. Columns 1 and 3 are masks and pose landmarks (18
landmarks with -1 indicating invisible points), while columns 2 and 4 are related synthetic pictures.



Quantitative results

Table 1: Quantitative results in PA (left) and SDF (right). 1 means larger is better while | means
lower is better. iILAT* indicates that iLAT trained without two-stream convolutions.

PATN PN-GAN Posewarp MR-Net Taming iLAT* iLAT Taming 1LAT

PSNR?T 20.83 21.36 21.76 21.79 2143  21.68 22.94 16.25 16.71
SSIMt  0.744 0.761 0.794 0.792 0.746  0.748 0.800 0.539  0.599
MAE| 0.062 0.062 0.053 0.066 0.057 0.056 0.046 0.107  0.096

FID]  82.79 64.43 93.61 79.50 33.53 31.83 27.36 7277  70.58

Table 2: Average inference time (sec/image) in PA, SDFE, and FFHQ of the vanilla AR transformer
based generation (Taming) and iLAT. We also show the average masked rate of three datasets.

masked rate  Taming iLAT

PA 31.97% 8.551  3.426
SDF 28.09% 8372  3.898
FFHQ 6.64% 8.183  1.180




Qualitative results

(a) Reference (b) Target (c) Taming (d) Taming* (e) SC-FEGAN (f) iLAT

(A) Pose-Guided Generation in PA. (B) FFHQ (row 1, 2) and CelebA (row 3, 4).

Figure 4: Qualitative results. Targets in (B) are combined with masks and XDoG sketches. Taming*
means that the Taming transformer tested with our LA attention mask. Please zoom-in for details.
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Ablations
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(A) Ablation in pose guiding (B) Ablation in face editing (C) Qualitative results in SDF

Figure 5: Ablation study for two-stream convolutions (A, B) and qualitative results in SDF (C). iLAT*
means 1LAT without two-stream convolutions. Please zoom-in for details.



(a) Reference (b) Target (c) iLAT | (d) Taming+Reference  (e) iLAT+Reference



Conclusions

* This method leverages a novel LA attention mask to enlarge the
receptive fields of AR, which achieves not only semantically
consistent but also realistic generative results.

* A two-stream convolution Is proposed to learn a discrete
representation learning without information leakages.

* Codes: https://github.com/ewrfcas/ILAT



