Distilling Object Detectors with Feature Richness
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Knowledge Distillation In the field of
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Two limitations of traditional methods

® They Ignore the beneficial features outside
the bounding boxes

® These methods imitate some features which
are mistakenly regarded as the background by
the teacher detector

(a) Images and bounding boxes  (b) Bounding box based method (c) Ours



Our Methods
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Mask in Different layers of FPN
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Experimental effect
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Experiments of different detector

mode | mAP ‘ AP50 AP75 AP_.S AP M AP_L
Retina-Res101(teacher) 2x 38.9 58.0 41.5 21.0 42.8 52.4

Retina-Res50(student) 2x 374 56.7 39.6 20.0 40.7 49.7
ours 2x 39.7 | 58.6 42.4 21.8 43.5 52.4
gain +23 | +19  +2.38 +1.8 +2.8 +2.7

GFL-Resnet101(teacher) 2x 449 63.1 49.0 28.0 49.1 57.2
GFL-Resnet50(student) 1x 40.2 | 584 43.3 23.3 44.0 52.2
ours 1x 436 | 619 47.5 25.9 47.7 56.4
gain +34 | +3.5 +4.2 +2.6 +3.7 +4.2

GFL-Resnet101(teacher) 2X 44 .9 63.1 49.0 28.0 49.1 57.2
GFL-Resnet50(student) 2x 429 61.2 46.5 27.3 46.9 53.3

ours 2x 447 | 63.0 48.4 28.7 49.0 56.7
gains +1.8 | +1.8 +1.9 +1.4 +2.1 +3.4
Faster-Res101(teacher) Ix 394 60.1 43.1 22.4 43.7 51.1
Faster-Res50(student) 1x 37.4 58.1 40.4 21.2 41.0 48.1
ours 1x 39.5 60.1 43.3 22.3 43.6 51.7
gains +2.1 | 420 +29  +1.1 +2.6 +3.6

FCOS-Resnet101(teacher) 2x 408 | 60.0 44.0 242 44.3 524
FCOS-Resnet50(student) 2x 385 | 57.7 41.0 21.9 42.8 48.6
ours 2x 409 | 60.3 43.6 25.7 45.2 51.2
gains +24 | +2.6 +2.6 +3.8 +2.4 +2.6

Table 1: Results of the proposed method with different detection frameworks. we use 2x learning
schedule to train 24 epochs or the 1x learning schedule to train 12 epochs on COCO dataset.




Different Modules

Retina-Res50 v v v v
Retina-Res101 v
FPN layers v v
Classification Head v v
mAP 374 389 394 384 39.7

Table 3: Ablation Study for various distillation modules on COCO dataset



