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Explainable/Interpretable Machine Learning

ØAllow human users to interpret predictions made by ML algorithms

ØWhy interpretability is a concern
n An essential property requested by trustworthy & human-centered AI

• Enable decision-makers to determine when to trust or distrust the predictions

n Nowadays interpretability is becoming one of the key considerations when
• Deploying ML models to high-stake decision-making scenarios 
• Fitting ML models to understand the data

ØTwo paradigms
n Build inherently interpretable ML models

• E.g., rule models, sparse linear models, generalized additive models

n Provide post-hoc explanations for black-box models
• E.g., Shapley values, integrated gradients, counterfactual explanation
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Interpretable Rule Models

ØRule models: longstanding attempt towards interpretable ML
n Making predictions with human-understandable logical rules

n Particularly suited for tabular data
• Contain mixed-type features and exhibit complex high-order feature interactions

n To be interpretable, a rule model should be simple
n Model complexity is not explicitly optimized by traditional rule learning algorithms

• E.g., it is not easy to understand a deep CART

A=a2

B=b2 C=a2

C=c3 D=d1 E>e1 D=d2

True False

Y=0 Y=1 Y=1 Y=0

IF ( A=a2 AND B=b2 )
THEN Y=1

ELIF ( A=a4 AND C=c2 )
THEN Y=0

ELIF ( D=d1 AND e1<=E<=e3 )
THEN Y=1

ELSE Y=0

IF ( A=a2 AND B=b2 )
OR ( A=a2 AND C=c3 )
OR ( D=d1 AND e1<=E<=e3 )
OR ( … )

THEN Y=1
ELSE Y=0

rule set rule list decision tree
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Rule Sets

ØHave a simpler combinatorial structure than rule lists and decision trees
n Easier to interpret and to learn from data

A B C D E Y

a1 b3 c1 d2 e1 0

a2 b2 c3 d1 e4 1

… … … … … …

IF ( A=a1 AND B=b2 )
OR ( A=a2 AND C=c3 )
OR ( D=d1 AND e1<=E<=e3 )
OR ( … )

THEN Y=1 ELSE Y=0

rule set
learning

IF ( A=a1 AND B=b2 ) THEN Y=1
IF ( A=a2 AND C=c3 ) THEN Y=1
IF ( D=d1 AND e1<=E<=e3 ) THEN Y=1
IF ( … ) THEN Y=1
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Rule Sets in Disjunctive Normal Form

A B C D E Y

a1 b3 c1 d2 e1 0

a2 b2 c3 d1 e4 1

… … … … … …

IF ( A=a1 AND B=b2 )
OR ( A=a2 AND C=c3 )
OR ( D=d1 AND e1<=E<=e3 )
OR ( … )

THEN Y=1 ELSE Y=0

A=
a1

A=
a2

B=
b1

B=
b2

B=
b3 … Y

1 0 0 0 1 … 0

0 1 0 1 0 … 1

… … … … … … …

Y = ( A=a1 ⋀ B=b2 )
⋁ ( A=a2 ⋀ C=c3 )
⋁ ( D=d1 ⋀ E>=e1 ⋀ E<=e3 )
⋁ ( … )

one-hot
encoding

rule set
learning

DNF
learning
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Applications

ØWhite-box predictive model for high-stake decision-making
n E.g., loan approval, crime prediction

ØExplaining data differences

_####_ Page 4 of 26 Abuzaid et al.

Table 1 Generally applicable built-in difference metrics

Difference
metric

Description

Support Fraction of rows with an attribute

Odds ratio Odds that a row will be in the test relation versus the
control relation if it has an attribute versus if it does
not

Risk ratio Probability that a rowwill be in the test relation versus
the control relation if it has an attribute versus if it does
not

Mean shift Percent change in a column’s mean for rows contain-
ing an attribute in the test versus the control relation

explanation, and one or more difference metric expressions
that define the utility of an explanation. These expressions
consist of a difference metric that quantifies the difference
between explanations and a corresponding threshold; the dif-
ference metric is a function that acts on each explanation to
define its utility, and explanations that do not satisfy the util-
ity threshold are pruned from the output.

As we demonstrate in Sect. 2.3, different difference met-
rics allow the DIFF operator to encapsulate the functionality
of a variety of explanation engines. By default, the DIFF oper-
ator can make use of four provided difference metrics, which
we describe in Table 1. While we found these difference
metrics are sufficient for our industrial use cases, the DIFF

operator supports user-defined difference metrics as well, as
we discuss in Sect. 2.4.
Example workflow. To demonstrate how to construct and
utilizeDIFFqueries,we consider the case of amobile applica-
tion developer who has been notified of increased application
crash rates in the last few days. The developer has a relational
database of log data from instances of both successful and
failed sessions from her application:

timestamp app_version device_type os crash

08-21-18 00:01 v1 iPhone X 11.0 false
... ... ... ... ...
08-28-18 12:00 v2 Galaxy S9 8.0 true
... ... ... ... ...
09-04-18 23:59 v3 HTC One 8.0 false

With this input, the developer must identify potential expla-
nations or causes for the crashes. To do so, she can make use
of the DIFF operator by executing the following query:

SELECT * FROM
(SELECT * FROM logs WHERE crash = true)

crash_logs
DIFF

(SELECT * FROM logs WHERE crash = false)
success_logs

ON app_version , device_type , os
COMPARE BY risk_ratio >= 2.0, support >= 0.05

MAX ORDER 2;

Here, the developer first selects her test relation to be the
instances when a crash occurred in the logs (crash_logs
) and the control relation to be instances when a crash
did not occur (success_logs). In addition, she specifies
the dimensions to consider for explanations of the crashes:
app_version, device_type, os.

The developer must also specify how potential explana-
tions should be ranked and filtered; she can accomplish this
by specifying one or more difference metrics and thresh-
olds. In this scenario, she first specifies the risk ratio, which
quantifies how much more likely a data point matching this
explanation is to be in the test relation than in the control
relation. By specifying a threshold of 2.0 for the risk ratio,
all returned explanations will be at least twice as likely to
occur in crash_logs than in success_logs. Further, the
developer only wants to consider explanations that have rea-
sonable coverage (i.e., explain a substantial portion of the
crashes). Therefore, she specifies a support threshold of 0.05,
which guarantees that every returned explanation will occur
at least 5% of the time in crash_logs. Finally, the developer
includes the clause MAX ORDER 2 to specify that the returned
explanations should never contain more than two attributes.
Running this DIFF query, the developer obtains the following
results:

app_version device_type os risk_ratio support

v1 – – 10.5 15%
– iPhone XS – 9.5 10%
– – 10.0 8.25 12%
v2 iPhone X – 7.25 30%
– Pixel 4 10.2 10.0 35%
v2 – 10.1 7.75 25%

For each explanation, the output includes the explanation’s
attributes, risk ratio, and support. A NULL value (denoted
as "-" in the output) indicates that the attribute can be any
value, similar to the output of a CUBE query. Thus, the first
explanation—app_version="v1"—is 10.5×more likely to
be associated with a crash in the logs, and it occurs in 15%
of the crashes.

The developer in our scenario may find these results
uninteresting—they may be known bugs. So, as a follow-
up, she changes the MAX ORDER clause to be MAX ORDER 3

and reruns the query:

app_version device_type os risk_ratio support

v1 – – 10.5 15%
– iPhone XS – 9.5 10%
– – 10.0 8.25 12%
v2 iPhone X – 7.25 30%
– Pixel 4 10.2 10.0 35%
v2 – 10.1 7.75 25%
v3 Galaxy S9 11.0 9.75 20%

123

crash=false

crash=true

difference?

Firas Abuzaid, et al. DIFF: A Relational Interface for Large-Scale Data Explanation. VLDB 2019
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Applications (Cont.)

Ø Interaction detection

|| 06/07/2018Felipe Llinares & Damián Roqueiro 6

Significant itemset mining looks for significant multiplicative feature interactions

(Informal) goal: Find all multiplicative
interactions of binary features which are
significantly associated with a binary class label

• Example applications:
• Association studies in genetics
• Functional genomics
• Mining clinical databases

Felipe Llinares López. Significant Pattern Mining for Biomarker Discovery. PhD Thesis
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Rule Set Learning

ØMajor challenge: exponentially sized search space

abcde

a b c d e

acab ad ae bc bd be cd ce de

abdabc abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

! literals (i.e.,
binary features)

↓
2! conjunctions

↓
2"! DNFs
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Rule Set Learning

ØGoal: Learn an interpretable and accurate rule set ! ⊆ 2 !

n In which each rule ! ∈ # is a subset of $

A=a1 AND B=b2

D=d1 AND e1<=E<=e3

A=a2 AND C=c3

false
positive

false
negative

true
positive

true
negative

overlap

FP FN Overlap Complexity
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Submodularity

Const Submodular Modular

FP FN Overlap Complexity

Minimize

Reorganize 

Maximize
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Regularized Submodular Maximization

ØCardinality constrained submodular maximization

ØDistorted greedy algorithm

ØApproximation guarantee

V (S) = g(S) �
P

R2S c(R) be the profit of a rule set, which is equal to �L(S) up to a constant.
Then minimizing L(S) is equivalent to maximizing V (S). For the sake of practicality, we further put
a cardinality constraint |S|  K on this optimization problem, which limits the number of rules in
the rule set. Then

max
S✓2[d],|S|K

V (S) (4)

is an instance of cardinality constrained submodular maximization problem. For non-negative mono-
tone submodular functions, the greedy algorithm achieves a 1� 1/e ⇡ 0.632 approximation ratio
[37], which is the best approximation possible for this problem. However, in our case V (S) is neither
non-negative nor monotone. It is possible to apply non-monotone submodular maximization algo-
rithms [11, 18] to our problem without care of negativeness, but doing this makes their approximation
guarantees invalid.

Fortunately, V (S) is the difference between a non-negative monotone submodular part g(S) and a
non-negative modular part

P
R2S c(R). Set functions with such structure, recently named regularized

submodular functions [26], have been shown to be amenable to maximization procedures with strong
approximation guarantees [44, 22, 16, 17].

3.1 Regularized submodular maximization

We apply the distorted greedy algorithm proposed by Harshaw et al. [22] to approximate maximization
of V (S). As illustrated in Algorithm 1, at each iteration, a rule maximizing the marginal gain in a
distorted objective is added to the rule set if its gain is positive. The distorted objective is adjusted
in a way such that initially higher importance is placed on the cost term, and then the importance
is gradually shifted back to the revenue term. By doing this, following approximation guarantee is
obtained.

Proposition 2. [22] Algorithm 1 returns a rule set S of cardinality at most K. If the maximization

subproblem at line 5 is solved to optimality, then

V (S) = g(S)�
X

R2S
c(R) � (1� 1/e)g(OPT)�

X

R2OPT

c(R)

where OPT is the optimal solution to problem (4).

Algorithm 1 Rule set learning

1 Input: Training data {(xi, yi)}ni=1, hyperparameters (�,�), cardinality K
2 Initialize S  ;
3 for k = 1 to K do
4 Define vk(R) = (1� 1/K)K�kg(R|S)� c(R) /* g(R|S) := g(S [ {R})� g(S) */
5 Solve R?  argmaxR✓[d] vk(R)
6 if vk(R?) > 0 then S  S [ {R?} end if
7 end for
8 Output: S

In addition, we provide an algorithm in the Appendix for further refining the output of Algorithm 1 if
possible. In each step, that algorithm tries to improve the objective through adding, removing, or
replacing a rule.

The remaining question is how to solve the subproblem of marginal gain maximization, which requires
search over the subsets of [d]. Naive exhaustive enumeration only works for small d, say, d < 20. For
datasets with numerical features or high-cardinality categorical features, the preprocessing step may
easily produce hundreds or thousands of binary features, making exhaustive enumeration impossible.
In such cases, approximate solution should be considered and the guarantee for Algorithm 1 will no
longer hold. However, we observe in practice that Algorithm 1 will still work satisfactorily if good
enough solutions to the subproblem are found. To this end, approximate rather than exact method is
considered in this work.
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C Harshaw, et al. Submodular Maximization Beyond Non-negativity: Guarantees, Fast Algorithms, and Applications. ICML 2019
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Distorted Greedy

abcde

a b c d e

acab ad ae bc bd be cd ce de

abdabc abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

a b c d e

acab ad ae bc bd be cd ce de

abdabc abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

a b c d e

acab ad ae bc bd be cd ce de

abdabc abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

a b c d e

acab ad ae bc bd be cd ce de

abdabc abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

(0) (1)

(2) (3)
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Marginal Gain Maximization

ØExhaustive enumeration: $ 2!

V (S) = g(S) �
P

R2S c(R) be the profit of a rule set, which is equal to �L(S) up to a constant.
Then minimizing L(S) is equivalent to maximizing V (S). For the sake of practicality, we further put
a cardinality constraint |S|  K on this optimization problem, which limits the number of rules in
the rule set. Then

max
S✓2[d],|S|K

V (S) (4)

is an instance of cardinality constrained submodular maximization problem. For non-negative mono-
tone submodular functions, the greedy algorithm achieves a 1� 1/e ⇡ 0.632 approximation ratio
[37], which is the best approximation possible for this problem. However, in our case V (S) is neither
non-negative nor monotone. It is possible to apply non-monotone submodular maximization algo-
rithms [11, 18] to our problem without care of negativeness, but doing this makes their approximation
guarantees invalid.

Fortunately, V (S) is the difference between a non-negative monotone submodular part g(S) and a
non-negative modular part

P
R2S c(R). Set functions with such structure, recently named regularized

submodular functions [26], have been shown to be amenable to maximization procedures with strong
approximation guarantees [44, 22, 16, 17].

3.1 Regularized submodular maximization

We apply the distorted greedy algorithm proposed by Harshaw et al. [22] to approximate maximization
of V (S). As illustrated in Algorithm 1, at each iteration, a rule maximizing the marginal gain in a
distorted objective is added to the rule set if its gain is positive. The distorted objective is adjusted
in a way such that initially higher importance is placed on the cost term, and then the importance
is gradually shifted back to the revenue term. By doing this, following approximation guarantee is
obtained.

Proposition 2. [22] Algorithm 1 returns a rule set S of cardinality at most K. If the maximization

subproblem at line 5 is solved to optimality, then

V (S) = g(S)�
X

R2S
c(R) � (1� 1/e)g(OPT)�

X

R2OPT

c(R)

where OPT is the optimal solution to problem (4).
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3 for k = 1 to K do
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5 Solve R?  argmaxR✓[d] vk(R)
6 if vk(R?) > 0 then S  S [ {R?} end if
7 end for
8 Output: S

In addition, we provide an algorithm in the Appendix for further refining the output of Algorithm 1 if
possible. In each step, that algorithm tries to improve the objective through adding, removing, or
replacing a rule.

The remaining question is how to solve the subproblem of marginal gain maximization, which requires
search over the subsets of [d]. Naive exhaustive enumeration only works for small d, say, d < 20. For
datasets with numerical features or high-cardinality categorical features, the preprocessing step may
easily produce hundreds or thousands of binary features, making exhaustive enumeration impossible.
In such cases, approximate solution should be considered and the guarantee for Algorithm 1 will no
longer hold. However, we observe in practice that Algorithm 1 will still work satisfactorily if good
enough solutions to the subproblem are found. To this end, approximate rather than exact method is
considered in this work.

4
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Can We Exploit Submodularity One More Time?

ØSadly, % ℛ is not a submodular set function

ØExamples covered by a rule: common examples covered by its features

ℬ &

'

(

ℬ ∩ # ∩ $
⇔

& ∖ (ℬ ∪ #̅ ∪ ($

set intersection
(non-submodular)

set union
(submodular)

abcde

a b c d e

acab ad ae bc bd be cd ce de

abdabc abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde
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Approximate Subproblem Solving

ØWe rewrite the subobjective as a difference of submodular (DS) functions
ØBased on this DS decomposition, an iterative refinement algorithm is 

proposed to solve the subproblem approximately

Submodular Submodular ModularConst

Modular lower bound Modular upper bound

Linearization

Maximize

Rewrite

Minorize-
Maximization

R Iyer, J Bilmes. Algorithms for Approximate Minimization of the Difference Between Submodular Functions, with Applications. UAI 2012
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Experiments

ØPredictive performance

Table 1: Predictive performance measured by average test accuracy (%).

Dataset #samples #features Ours RIPPER BRS CG CART RF

tic-tac-toe 958 54 100.0 (0.0) 99.7 (0.7) 100.0 (0.0) 100.0 (0.0) 94.2 (1.9) 99.1 (0.9)

liver 345 104 69.5 (5.1) 66.0 (5.8) 60.6 (8.3) 68.7 (5.4) 68.6 (6.3) 73.9 (9.3)

heart 303 118 82.2 (7.7) 76.2 (7.7) 79.7 (7.5) 78.0 (6.8) 82.2 (6.1) 82.8 (7.1)

ionosphere 351 566 91.4 (5.4) 87.2 (7.5) 85.0 (4.2) 90.6 (4.4) 89.5 (3.3) 94.0 (3.4)

ILPD 583 160 71.4 (0.8) 57.8 (7.7) 69.0 (5.3) 71.7 (3.4) 69.4 (6.4) 71.2 (4.0)

WDBC 569 540 94.0 (4.8) 94.7 (1.6) 93.9 (1.2) 94.7 (3.4) 93.5 (3.8) 97.0 (3.6)

pima 768 134 75.4 (4.3) 75.9 (3.3) 72.2 (3.3) 74.0 (3.4) 75.4 (5.5) 76.9 (3.3)

transfusion 748 64 78.1 (3.2) 78.2 (2.7) 77.1 (5.1) 78.2 (3.6) 78.7 (2.8) 79.7 (2.8)

banknote 1372 72 98.7 (1.0) 92.8 (2.4) 91.1 (2.5) 98.8 (0.9) 99.1 (1.2) 99.6 (0.6)

mushroom 8124 224 100.0 (0.0) 100.0 (0.0) 99.7 (0.2) 99.9 (0.1) 100.0 (0.0) 100.0 (0.0)

COMPAS-2016 5020 30 66.5 (2.3) 57.7 (1.0) 63.4 (1.7) 66.7 (2.2) 66.2 (2.2) 66.6 (2.5)

COMPAS-binary 6907 24 67.0 (1.5) 56.0 (0.6) 65.5 (1.7) 66.4 (1.9) 67.3 (1.5) 67.3 (1.6)

FICO-binary 10459 34 71.2 (1.1) 60.1 (1.2) 70.5 (1.1) 71.1 (1.2) 71.9 (1.4) 72.3 (1.4)

COMPAS 12381 180 73.3 (1.3) 72.3 (1.5) 70.7 (1.1) N/A 72.2 (1.4) 73.8 (1.1)

FICO 10459 312 70.4 (1.2) 69.1 (1.9) 70.1 (0.9) 71.0 (0.7) 70.9 (1.1) 72.3 (0.8)

adult 48842 262 84.4 (0.6) 83.3 (0.9) 80.3 (1.4) 82.8 (0.4) 83.7 (0.4) 84.7 (0.5)

bank-market 11162 174 84.4 (0.8) 82.9 (1.1) 76.9 (1.2) 82.3 (0.9) 83.0 (1.0) 85.2 (0.9)

magic 19020 180 84.6 (0.8) 82.2 (1.3) N/A 80.8 (1.0) 84.7 (0.5) 86.7 (0.5)

musk 6598 2922 97.3 (0.8) 96.1 (0.8) 90.2 (2.0) 95.0 (0.7) 96.0 (0.9) 97.7 (0.6)

gas 13910 2304 98.2 (0.4) 99.0 (0.4) N/A 95.9 (0.7) 99.0 (0.3) 99.8 (0.1)

our method generally demonstrates superiority over other rule set learners. Overall, the accuracy
gaps between our method and the uninterpretable RF are within 3% on all datasets except liver.

Table 2: Interpretability measured by number of rules, number of literals, and overlap among rules.

Dataset
#Rules #Literals Overlap (%)

Ours RIPPER CG CART Ours RIPPER CG CART Ours RIPPER CG

tic-tac-toe
8.0 9.5 8.0 69.9 24.0 31.1 24.3 138.8 2.3 52.8 23.3
(0.0) (1.4) (0.0) (3.6) (0.0) (5.8) (0.5) (7.1) (1.2) (8.1) (0.5)

liver
18.0 2.1 14.5 5.0 83.8 7.1 58.5 9.0 7.5 28.0 9.7

(2.4) (0.7) (1.2) (0.0) (10.5) (3.3) (4.9) (0.0) (4.9) (17.7) (1.7)

heart
2.1 4.0 10.3 11.4 4.4 11.0 41.5 21.8 16.8 48.4 27.4
(0.3) (1.1) (0.8) (1.1) (1.3) (3.8) (3.2) (2.1) (7.7) (4.9) (2.4)

ionosphere
2.0 3.6 4.3 24.7 8.0 12.5 20.3 48.4 3.4 57.2 32.1
(0.7) (0.8) (0.8) (2.1) (2.4) (3.1) (3.8) (4.2) (5.0) (7.9) (7.1)

ILPD
1.1 2.6 2.0 4.3 0.2 7.0 3.0 7.6 0.0 31.7 0.0
(0.3) (0.5) (0.0) (0.48) (0.6) (1.5) (0.0) (1.0) (0.0) (6.7) (0.1)

WDBC
8.0 5.0 5.3 7.9 27.7 10.6 13.4 14.8 2.4 35.0 26.8
(1.1) (1.1) (0.6) (1.0) (3.0) (3.0) (1.6) (2.0) (6.0) (5.3) (1.0)

pima
3.2 3.6 6.7 10.1 10.0 13.0 20.0 19.2 2.6 27.0 5.4
(2.2) (1.3) (1.7) (0.6) (10.7) (6.5) (6.5) (1.1) (3.1) (8.2) (1.2)

transfusion
1.4 2.1 2.7 11.0 4.3 9.0 7.9 21.0 0.0 21.3 0.8
(0.8) (0.7) (0.5) (0.5) (2.8) (3.0) (1.6) (0.9) (0.0) (13.1) (0.5)

banknote
8.7 7.4 4.0 28.2 32.8 21.0 10.9 55.4 0.1 41.0 9.5
(1.3) (1.3) (0.0) (0.7) (5.8) (4.2) (1.4) (5.4) (0.3) (3.2) (0.7)

mushroom
3.9 6.1 5.0 14.1 8.4 10.9 7.0 27.2 0.0 41.6 21.0
(0.3) (1.1) (0.0) (0.6) (1.3) (1.1) (0.0) (1.1) (0.0) (15.8) (0.2)

COMPAS-2016
11.8 9.0 3.0 31.0 41.9 31.4 6.0 61.0 0.0 30.9 0.5

(4.6) (1.6) (0.0) (0.7) (20.1) (7.0) (0.0) (1.3) (0.1) (0.2) (0.2)

COMPAS-binary
11.4 12.0 2.9 78.0 42.2 48.1 5.4 155.0 0.1 32.0 0.0

(1.3) (1.7) (0.3) (1.1) (6.3) (8.8) (0.9) (2.1) (0.2) (0.7) (0.0)

FICO-binary
21.6 16.7 2.0 158.5 134.0 106.8 4.0 316.0 0.3 37.8 0.0

(3.3) (2.1) (0.0) (2.7) (23.8) (14.3) (0.0) (5.4) (0.3) (0.9) (0.0)

COMPAS
5.5 12.0 N/A 85.9 24.0 66.0 N/A 170.8 0.2 21.2 N/A
(2.7) (2.7) (2.3) (15.8) (15.3) (4.7) (0.3) (3.5)

FICO
16.0 16.7 1.1 69.5 118.6 99.7 1.4 138.0 3.5 39.8 0.0

(5.5) (3.9) (0.3) (1.4) (39.3) (26.6) (1.2) (2.7) (1.3) (3.8) (0.0)

adult
9.1 42.7 2.0 398.3 83.4 337.0 5.7 795.6 0.8 25.8 1.8
(3.1) (15.2) (0.0) (4.9) (30.7) (128.9) (0.5) (9.9) (0.6) (7.0) (0.4)

bank-market
17.6 43.8 11.0 289.0 118.5 269.1 18.7 577.0 3.6 43.8 7.8

(3.2) (7.1) (0.0) (2.8) (15.1) (49.2) (0.8) (5.7) (1.9) (3.6) (0.4)

magic
19.1 52.3 2.7 398.9 136.1 391.3 6.2 796.8 2.8 50.0 7.6

(6.6) (10.6) (0.5) (4.7) (49.2) (75.0) (0.4) (9.3) (1.7) (0.0) (2.8)

musk
8.9 19.6 5.0 180.0 61.2 101.4 21.0 359.0 0.8 36.9 2.7
(1.8) (1.5) (0.4) (7.1) (14.8) (7.6) (1.9) (14.2) (0.5) (3.9) (1.4)

gas
13.1 24.2 4.0 172.2 74.2 106.8 14.7 343.4 15.2 50.0 22.1

(1.0) (1.8) (0.0) (2.3) (4.2) (11.6) (1.5) (4.7) (1.7) (0.0) (3.0)

8
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Table 1: Predictive performance measured by average test accuracy (%).

Dataset #samples #features Ours RIPPER BRS CG CART RF

tic-tac-toe 958 54 100.0 (0.0) 99.7 (0.7) 100.0 (0.0) 100.0 (0.0) 94.2 (1.9) 99.1 (0.9)

liver 345 104 69.5 (5.1) 66.0 (5.8) 60.6 (8.3) 68.7 (5.4) 68.6 (6.3) 73.9 (9.3)

heart 303 118 82.2 (7.7) 76.2 (7.7) 79.7 (7.5) 78.0 (6.8) 82.2 (6.1) 82.8 (7.1)

ionosphere 351 566 91.4 (5.4) 87.2 (7.5) 85.0 (4.2) 90.6 (4.4) 89.5 (3.3) 94.0 (3.4)

ILPD 583 160 71.4 (0.8) 57.8 (7.7) 69.0 (5.3) 71.7 (3.4) 69.4 (6.4) 71.2 (4.0)

WDBC 569 540 94.0 (4.8) 94.7 (1.6) 93.9 (1.2) 94.7 (3.4) 93.5 (3.8) 97.0 (3.6)

pima 768 134 75.4 (4.3) 75.9 (3.3) 72.2 (3.3) 74.0 (3.4) 75.4 (5.5) 76.9 (3.3)

transfusion 748 64 78.1 (3.2) 78.2 (2.7) 77.1 (5.1) 78.2 (3.6) 78.7 (2.8) 79.7 (2.8)

banknote 1372 72 98.7 (1.0) 92.8 (2.4) 91.1 (2.5) 98.8 (0.9) 99.1 (1.2) 99.6 (0.6)

mushroom 8124 224 100.0 (0.0) 100.0 (0.0) 99.7 (0.2) 99.9 (0.1) 100.0 (0.0) 100.0 (0.0)

COMPAS-2016 5020 30 66.5 (2.3) 57.7 (1.0) 63.4 (1.7) 66.7 (2.2) 66.2 (2.2) 66.6 (2.5)

COMPAS-binary 6907 24 67.0 (1.5) 56.0 (0.6) 65.5 (1.7) 66.4 (1.9) 67.3 (1.5) 67.3 (1.6)

FICO-binary 10459 34 71.2 (1.1) 60.1 (1.2) 70.5 (1.1) 71.1 (1.2) 71.9 (1.4) 72.3 (1.4)

COMPAS 12381 180 73.3 (1.3) 72.3 (1.5) 70.7 (1.1) N/A 72.2 (1.4) 73.8 (1.1)

FICO 10459 312 70.4 (1.2) 69.1 (1.9) 70.1 (0.9) 71.0 (0.7) 70.9 (1.1) 72.3 (0.8)

adult 48842 262 84.4 (0.6) 83.3 (0.9) 80.3 (1.4) 82.8 (0.4) 83.7 (0.4) 84.7 (0.5)

bank-market 11162 174 84.4 (0.8) 82.9 (1.1) 76.9 (1.2) 82.3 (0.9) 83.0 (1.0) 85.2 (0.9)

magic 19020 180 84.6 (0.8) 82.2 (1.3) N/A 80.8 (1.0) 84.7 (0.5) 86.7 (0.5)

musk 6598 2922 97.3 (0.8) 96.1 (0.8) 90.2 (2.0) 95.0 (0.7) 96.0 (0.9) 97.7 (0.6)

gas 13910 2304 98.2 (0.4) 99.0 (0.4) N/A 95.9 (0.7) 99.0 (0.3) 99.8 (0.1)

our method generally demonstrates superiority over other rule set learners. Overall, the accuracy
gaps between our method and the uninterpretable RF are within 3% on all datasets except liver.

Table 2: Interpretability measured by number of rules, number of literals, and overlap among rules.

Dataset
#Rules #Literals Overlap (%)

Ours RIPPER CG CART Ours RIPPER CG CART Ours RIPPER CG

tic-tac-toe
8.0 9.5 8.0 69.9 24.0 31.1 24.3 138.8 2.3 52.8 23.3
(0.0) (1.4) (0.0) (3.6) (0.0) (5.8) (0.5) (7.1) (1.2) (8.1) (0.5)

liver
18.0 2.1 14.5 5.0 83.8 7.1 58.5 9.0 7.5 28.0 9.7

(2.4) (0.7) (1.2) (0.0) (10.5) (3.3) (4.9) (0.0) (4.9) (17.7) (1.7)

heart
2.1 4.0 10.3 11.4 4.4 11.0 41.5 21.8 16.8 48.4 27.4
(0.3) (1.1) (0.8) (1.1) (1.3) (3.8) (3.2) (2.1) (7.7) (4.9) (2.4)

ionosphere
2.0 3.6 4.3 24.7 8.0 12.5 20.3 48.4 3.4 57.2 32.1
(0.7) (0.8) (0.8) (2.1) (2.4) (3.1) (3.8) (4.2) (5.0) (7.9) (7.1)

ILPD
1.1 2.6 2.0 4.3 0.2 7.0 3.0 7.6 0.0 31.7 0.0
(0.3) (0.5) (0.0) (0.48) (0.6) (1.5) (0.0) (1.0) (0.0) (6.7) (0.1)

WDBC
8.0 5.0 5.3 7.9 27.7 10.6 13.4 14.8 2.4 35.0 26.8
(1.1) (1.1) (0.6) (1.0) (3.0) (3.0) (1.6) (2.0) (6.0) (5.3) (1.0)

pima
3.2 3.6 6.7 10.1 10.0 13.0 20.0 19.2 2.6 27.0 5.4
(2.2) (1.3) (1.7) (0.6) (10.7) (6.5) (6.5) (1.1) (3.1) (8.2) (1.2)

transfusion
1.4 2.1 2.7 11.0 4.3 9.0 7.9 21.0 0.0 21.3 0.8
(0.8) (0.7) (0.5) (0.5) (2.8) (3.0) (1.6) (0.9) (0.0) (13.1) (0.5)

banknote
8.7 7.4 4.0 28.2 32.8 21.0 10.9 55.4 0.1 41.0 9.5
(1.3) (1.3) (0.0) (0.7) (5.8) (4.2) (1.4) (5.4) (0.3) (3.2) (0.7)

mushroom
3.9 6.1 5.0 14.1 8.4 10.9 7.0 27.2 0.0 41.6 21.0
(0.3) (1.1) (0.0) (0.6) (1.3) (1.1) (0.0) (1.1) (0.0) (15.8) (0.2)

COMPAS-2016
11.8 9.0 3.0 31.0 41.9 31.4 6.0 61.0 0.0 30.9 0.5

(4.6) (1.6) (0.0) (0.7) (20.1) (7.0) (0.0) (1.3) (0.1) (0.2) (0.2)

COMPAS-binary
11.4 12.0 2.9 78.0 42.2 48.1 5.4 155.0 0.1 32.0 0.0

(1.3) (1.7) (0.3) (1.1) (6.3) (8.8) (0.9) (2.1) (0.2) (0.7) (0.0)

FICO-binary
21.6 16.7 2.0 158.5 134.0 106.8 4.0 316.0 0.3 37.8 0.0

(3.3) (2.1) (0.0) (2.7) (23.8) (14.3) (0.0) (5.4) (0.3) (0.9) (0.0)

COMPAS
5.5 12.0 N/A 85.9 24.0 66.0 N/A 170.8 0.2 21.2 N/A
(2.7) (2.7) (2.3) (15.8) (15.3) (4.7) (0.3) (3.5)

FICO
16.0 16.7 1.1 69.5 118.6 99.7 1.4 138.0 3.5 39.8 0.0

(5.5) (3.9) (0.3) (1.4) (39.3) (26.6) (1.2) (2.7) (1.3) (3.8) (0.0)

adult
9.1 42.7 2.0 398.3 83.4 337.0 5.7 795.6 0.8 25.8 1.8
(3.1) (15.2) (0.0) (4.9) (30.7) (128.9) (0.5) (9.9) (0.6) (7.0) (0.4)

bank-market
17.6 43.8 11.0 289.0 118.5 269.1 18.7 577.0 3.6 43.8 7.8

(3.2) (7.1) (0.0) (2.8) (15.1) (49.2) (0.8) (5.7) (1.9) (3.6) (0.4)

magic
19.1 52.3 2.7 398.9 136.1 391.3 6.2 796.8 2.8 50.0 7.6

(6.6) (10.6) (0.5) (4.7) (49.2) (75.0) (0.4) (9.3) (1.7) (0.0) (2.8)

musk
8.9 19.6 5.0 180.0 61.2 101.4 21.0 359.0 0.8 36.9 2.7
(1.8) (1.5) (0.4) (7.1) (14.8) (7.6) (1.9) (14.2) (0.5) (3.9) (1.4)

gas
13.1 24.2 4.0 172.2 74.2 106.8 14.7 343.4 15.2 50.0 22.1

(1.0) (1.8) (0.0) (2.3) (4.2) (11.6) (1.5) (4.7) (1.7) (0.0) (3.0)

8

odor=n AND stalk-surface-below-ring=y
AND stalk-color-above-ring != n

even simpler than the rule
given in dataset description:
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Table 4: Characteristics of datasets used in our experimental study.

Dataset #samples #features #binarized #positives #negatives

tic-tac-toe 958 9 54 626 332
liver 345 6 104 145 200
heart 303 13 118 165 138
ionosphere 351 34 566 225 126
ILPD 583 10 160 416 167
WDBC 569 30 540 212 357
pima 768 8 134 268 500
transfusion 748 4 64 178 570
banknote 1372 4 72 610 762
mushroom 8124 22 224 3916 4208
COMPAS-2016 5020 6 30 2246 2774
COMPAS-binary 6907 12 24 3196 3711
FICO-binary 10459 17 34 5000 5459
COMPAS 12381 22 180 3855 8526
FICO 10459 23 312 5000 5459
adult 48842 14 262 11687 37155
bank-market 11162 16 174 5289 5873
magic 19020 10 180 12332 6688
musk 6598 166 2922 1017 5581
gas 13910 128 2304 6778 7132

A.5 Running Time

Table 5: Average running time in seconds.

Dataset Ours CG RIPPER BRS CART RF

tic-tac-toe 0.794 12.815 0.204 14.833 0.002 0.097
liver 4.113 62.482 0.232 19.513 0.002 0.083
heart 0.853 62.840 0.227 14.858 0.001 0.077
ionosphere 6.064 51.475 0.914 17.304 0.008 0.090
ILPD 0.909 81.869 0.325 23.254 0.004 0.097
WDBC 8.209 23.009 1.042 26.592 0.008 0.091
pima 1.580 66.515 0.471 54.542 0.005 0.105
transfusion 0.679 8.246 0.208 21.857 0.001 0.095
banknote 2.142 13.043 0.274 659.874 0.002 0.093
mushroom 1.637 16.369 2.083 48.763 0.031 0.252
COMPAS-2016 2.860 14.914 1.243 33.815 0.003 0.159
COMPAS-binary 3.380 16.151 2.178 41.120 0.003 0.174
FICO-binary 7.705 11.199 6.890 72.515 0.016 0.432
COMPAS 16.534 N/A 10.359 237.615 0.083 0.897
FICO 33.935 159.838 18.826 695.484 0.215 1.121
adult 15.952 288.338 202.279 39787.330 0.815 4.802
bank-market 34.185 107.736 30.563 8956.680 0.124 0.842
magic 39.432 222.451 65.904 N/A 0.197 1.459
musk 88.215 659.791 371.562 864.823 1.388 1.644
gas 192.125 5353.880 582.690 N/A 2.331 2.772
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n Exact versus approximate subproblem solving

Table 6: Approximation quality measured by relative gaps.

Dataset #features V (Sapprox) V (Sbnb) Relative Gap

COMPAS-binary 24 871.00 875.00 0.0046
COMPAS-2016 30 594.40 590.00 -0.0075
FICO-binary 34 1977.00 1919.00 -0.0302
tic-tac-toe 54 433.78 433.78 0.0000
transfusion 64 12.00 12.00 0.0000
banknote 72 599.40 602.40 0.0050
heart 118 99.48 99.48 0.0000
ILPD 160 217.00 217.00 0.0000
mushroom 224 3908.00 3908.00 0.0000

liver 104 127.68 124.69 -0.0240
pima 134 . 74.84 76.00 . 0.0153
bank-market 174 3329.07 3323.59 -0.0016
magic 180 9251.09 9193.73 -0.0062
COMPAS 180 563.00 642.57 0.1238
adult 262 3690.00 3665.10 -0.0068
FICO 312 1936.30 1927.00 -0.0048
WDBC 540 209.00 207.01 -0.0096
ionosphere 566 198.80 199.20 0.0020
musk 2922 565.50 609.90 0.0728
gas 2304 6234.64 6181.82 -0.0085
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