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Beyond Sparsity in High-dimensional Models

High-dimensional models: the number of parameters p exceeds the sample size n
@ Sparsity Assumption
- Assumes p-dimensional parameter 3 € RP has many zero components
- Avoids overfitting & Improves predictive accuracy and interpretation
@ Sparse Homogeneity Assumption
- Assumes (3 has clustered patterns and many possibly clustered zeros
- Plausible when 3 has a pre-known structure (e.g. time, image, ...)

r-'

Sparsity Assumption: Sparse Homogeneity Assumption:
‘A needle in a haystack’ ‘Bunches of needles in a haystack’
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Introduction

Sparse Homogeneity and Graph Structured Parameters

Examples of models under the sparse homogeneity assumption:
o Fused lasso(FL)[Tibshirani et al., 2005]: for time-neighboring coefficients 3

3 {05lly = XBIB + A0, 18 — Bl +7 50 161}
o Generalized fused lasso[Tibshirani et al., 2011]: consider an undirected
graph G = (V/, E) with |V| = p which represents a pre-known structure of 8

B = argming
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Figure 6. Observed left hippocampus images. [Wang et al., 2017]
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Bayesian Model under Sparse Homogeneity

Here we propose a prior model on 3 which induces clustered sparsity. It delivers
full Bayesian inference for model parameters, including the number of clusters.
o Let M= {Cy,...,Ck} be a graph partition of G.
@ First we introduce a tree-based prior on I using random spanning tree/forest.
Here I1 can be represented through cuts of spanning forest of G:

Proposition 1(full coverage of graph partition with cuts of spanning forest)

Let G=(V, E) be a graph with n. connected components and M={Cy,...,Cx}
be an arbitrary graph partition of G. There exists a spanning forest F=(V, EF)
with |EF|=|V| — n., and a set of cut-edges E¢ C EF with |[E¢| = K — n such
that the induced cut of F is .

*i8%00 % o

Graph G and partition An example F Another example of F
I={C,(,C3} and cut-edge(dashed) and cut-edge(dashed)
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Model Description Tree-based graph partition prior

A Bayesian Random Spanning Forest Partition Prior

We specify a prior on [1 through spanning forest 7 and the number of clusters K.
Specifically, we have a prior on spanning forest space by choosing F be the

minimum spanning forest of G with random edge weights w; . Unif(0, 1):

F = MSF({w;}), wy X Unif(0,1) (uniform edge weights on a graph)
p(K=k)oc(1-c), k=n,....,K (geometric prior on #(clusters))
p(M|F,K) x 1(JN] = K and is induced by F) (uniformly select K — n. cut-edges)

@ Extension of [Luo et al., 2021], but different from [Teixeira et al., 2019].
@ c € [0,1) controls the model size, ¢ closer to 1 penalizes large #(clusters).

o After F and K are given, I is determined by selecting K — n. cut-edges
uniformly at random to get a graph partition I1 of size K.
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Model Description Low-rank multivariate horseshoe prior

Bayesian Graph Structured Sparsity

Given a graph partition I1, we can construct a K x p matrix ¢ from I:
&4 =1/4/|Cx| if j € Ck and 0 otherwise, k=1,....K, j=1,...,p
We propose to use horseshoe prior[Carvalho et al., 2010] to induce sparsity:

Blo, 72 AT ~ N,(0, a?r2dTAD), A= diag()3,..., %)
rank K

iid
Ak ~

&2
e

Graph G and partition
={C,0,Cs}

C*(0,1),

Figure: lllustrative example of graph partitioning and corresponding parameters when
B € R® forms K = 3 clusters, C1 = {1},C2 = {2,4},C3 = {3,5}.
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Model Description BRI

T-LoHo: Tree-based Low-rank Horseshoe

The p x p covariance matrix ® TA® has a low-rank(rank K << p)
Probability density of N,(0,0272® T Ad) lies on rowsp(P) with dimension K
Row space of ® restricts 8; = 3; if 5; and 3; lies in a same cluster

e By considering transformation 3 := ®3, we have 8 ~ Nk (0,0272A)

@ Since ®T is M-P pseudoinverse of ®, we can recover B = ¢T,@

In summary, we propose a Bayesian hierarchical model with (1) Tree-based prior
[N|F, K][F][K] and (2) Low-rank horseshoe prior [3|c2, 72, A, M][o?][72][A]

T-LoHo: Tree-based Low-rank Horseshoe Model
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Model Description T-LoHo

T-LoHo with linear model

T-LoHo prior can be naturally incorporated into a linear model. With response
vector y € R" and column-standardized design matrix X € R"*P,

y=XB+e€ € NNn(O,Uzl,,)

B ~ T-LoHo with a (known) undirected graph G

Denote set of parameters © := (5,02,/\,7', N, K,F) and X :=X®T so that
XB = X®Td3 = XB. Then the posterior p(©|y) becomes

p(Oly) o Na(y|XB,01,) x Nk (8]0, 0%7%A) x 1/0°
X (14+72) I (L AF) o (B20) T < (1= o) x 1

where the last line is the product of priors p(7) Hle p(A)p(N|K, F)p(K)p(W).
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Posterior Inference and Theoretical Properties [ESSEIIISSETIIES

Posterior Inference

We design a reversible-jump MCMC|[Green, 1995] algorithm to sample from ©|y:

Algorithm 1: One full iteration of RIMCMC posterior sampler

Step 1. Update II, K, F using collapsed conditional [II, K, F|A, 7, y] where B, o2 are integrated
out.t With probabilities (p,, pp, pe, P4) summing up to 1, perform one of the following substeps:
1-a. (splir) Propose (IT*, K* = K +1) compatible with F, and accept with probability
min{1, A, - P, - Lo}, where A, is prior ratio, P, is proposal ratio, £, is likelihood ratio.
1-b. (merge) Propose (II*, K* = K —1) compatible with F, and accept w.p. min{1, Ay-Py-L;}.
1-c. (change) Propose (IT*, K*= K') compatible with F, and accept w.p. min{1, A, - P. - L.}.
1-d. (hyper) Update F* compatible with current II.
Step 2. Jointly update (7, 02, 8) from [r, 02, 3| A, IL, K, F, y], by performing:
2-1. Update 7 from [r | A, II, K, F, y] using Metropolis-Hastings sampler,
2-2. Update o2 from [0 | 7, A, II, K, F, y] with an inverse gamma distribution,
2-3. Update 3 from [5’ |02, 7, AT, K, F,y] with a multivariate normal distribution.

Step 3. Update A from [A| 7,02, B.1LK,F, y| using slice sampler.

1 When X = I,,(i.e. normal means model), it is possible to integrate out A instead of o?
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Posterior Inference and Theoretical Properties [ESSEIIISSETIIES

Posterior Inference

Step 1 explores graph partitions of G by updating I, K, and F. It performs one of
the four possible moves: (1) split (2) merge (3) change(split & merge) (4) hyper.

—

7
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Posterior Inference and Theoretical Properties [ESSEIIISSETIIES

Computation Strategies

e In step 2: jointly update 7,02, 3 using a blocked Gibbs sampler of
[Johndrow et al., 2020] to improve mixing.

@ In step 3, update A using a slice sampler.

o Computation bottleneck: likelihood calculation which involves calculation
of .1, and |Z,x,|, where 2, = 1, + 72XAXT (O(n?), expensivel).

o Reduce the rank from n to K by applying Woodbury formula,

Sl (AT 4 KR KT
———
(Zixk)

o Update the Cholesky decomposition of X, , with rank-1 update
[Golub and Van Loan, 2013, Sec. 6.5.4] when X changes. Use the diagonal
part updating scheme when 7 or A changes.

o Computation complexity: O(max{nK, K*}) per iteration, excluding step 1-d
which takes O(mlog p) with m = |E].
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Clustering effect of T-LoHo

@ The difference of parameters 3; — /3; has an important role in clustering:
- {1 penalty(FL)[Tibshirani et al., 2005], ¢y penalty[Fan and Guan, 2018]
- Prior on B; — B, e.g. Laplace[Kyung et al., 2010], t[Song and Cheng, 2020]
@ But putting a prior directly on the difference of parameters 3; — 3; has many
limitations when G has many edges.
@ T-LoHo does not directly put prior on the difference 3; — 3;, it puts
multivariate prior on 3 with low-rank covariance structure.

@ Q. What are the properties of induced prior on ; — ; when 3 ~ T-LoHo?

@ A. Horseshoe component of T-LoHo not only introduces shrinkage but also
has a clustering effect to facilitate homogeneity, compared to the usual
Gaussian prior.
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Posterior Inference and Theoretical Properties Horseshoe prior and clustering

When 81, B2 © mus(8) = [3° N(B]0, 0272A2) CT(A[0, 1)dA, it induces prior on
standardized difference 6 = (81 — B2)/0 ~ ma where

2

ma(6) = /OOO N (510, v)—

i)

Horseshoe

Figure: Joint density f(x,y) = mus(x)mHs(y) overlaid with marginal density of
(x — y) ~ ma shown as red.
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Posterior Inference and Theoretical Properties Horseshoe prior and clustering

Clustering Effect of T-LoHo

For simplicity, we assume X = I,. In step 1-b(merge), we update partition I based
on the acceptance probability min{1, (1 — ¢)~! x £}. Term (1 — c) is from the
penalization prior p(K) o (1 — ¢)¥, and L is a likelihood ratio. For example,

@@e merge 09@@
@ = O adem
® 5 ® W)

p(y|Mzi) _ J Py, -, y10lB)P(B)d B
p(yIM2) [ p(y1, ..., ¥6l81)p(B1)dB1 [ p(y7, - yrol 52)p(15)d

= L is the Bayes factor of Bayesian two-sample t test[Gonen et al., 2005],

P(data| M;)

tpp = : BFip = ———+
My = pp, Mo # o, 12 = Bl data| Ma)

(Note that for step 1-a(split), £ is simply inverted.)
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Clustering Effect of T-LoHo

Following [GOnen et al., 2005], we reparametrize § := (1 — p2)/o with prior p(d)
which is a parameter of interest and put noninformative prior p(£542 52) o 1/0?
on nuisance parameters. Then the Bayes factor BF;; is a function of two-sample t
statistic

-

Sp/\F

Q. What are the properties of induced prior on 3; — 3; when 3 ~ T-LoHo?

t= where s, = pooled sd, N = (nj!+ny!)~?

We compare BFj> when § ~ N(0,1) versus 6 ~ 7a(induced by T-LoHo).
Scenarios:

o (Balanced groups) ny : n; = 1: 1 with increasing v = ny + np — 2,

@ (Unbalanced groups) ny : np =9 : 1 with increasing v.
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Clustering Effect of T-LoHo
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Figure: Comparison of Bayes factor between Horseshoe and Gaussian prior under
different (v,N) settings. Higher Bayes factor implies favoring Ho : p1 = o

When effect size |t| is small, horseshoe more strongly favors 1-group over 2-groups.
In contrast when |t| is big, horseshoe more strongly favors 2-groups over 1-group.
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Posterior Consistency

Assumptions:

(A-1) The graph satisfies g, < n/logp, n. = o(g};), and log | P,,| = O(g;; log p).

(A-2) All the~cov~ariates are uniformly bounded. There exist some fixed constant Ag > 0, such that
Amin(XTX) > n)\ for any partition in P,,.

(A-3) max; |B|/o* < L, where log(L) = O(log p).

(A-4) —logT = O(logp), 7 < p‘(2+57)\/g;; logp/n , 1 — ¢ > p©, and

MiNy2e(p+2, 6*2(14c,e2)] 7(0?) > 0 for some positive constants ¢, ¢, and ¢, .

Theorem 1 (Posterior contraction)

Under Assumptions (A-1) to (A-4), there exists a large enough constant M; > 0
and €, < /g log p/n such that the posterior distribution satisfies

70 (I8 — B*|l2 > Myio*e, | y) < exp(—c1ne2) with probability 1 — exp(—cane?)
for some constants ¢; > 0 and ¢ > 0.
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Simulation Settings

@ Scalar-on-Image regression model example similar to [Kang et al., 2018]
@ Set graph G be a 30 x 30 lattice graph which represents 2-D image.

@ Predictors X; € R%? lying on a graph are generated from iid normal (¥ = 0)
or mean zero Gaussian process(GP) with exponential kernel (¢ > 0).

e True coefficient 3 € R is sparse(84% zero) with irregular cluster shapes
with sharp discontinuities(figure next page)

@ Scalar responses y; € R, i = 1,...,100 are generated with Gaussian noise
with noise variance o2 depending on SNR € {2,4}

@ Competing methods:

Soft-thresholded GP(STGP)[Kang et al., 2018]

Sparse fused lasso(FL) [Tibshirani et al., 2011]

Graph OSCAR (GOSCAR) [Yang et al., 2012]

Bayesian graph Laplacian (BGL) [Liu et al., 2014]

Spike-and-slab Laplacian (BayesMSG) [Kim and Gao, 2020]

@ Performance measure: Mean square prediction error(MSPE), Rand index(RI)
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Simulation and Real data results

Simulation Results

(a) True B (b) T-LoHo (c) STGP (d) Fused Lasso
304 30 30 304
. | 15
20 . 20 20 i 20 r : !;'2
- 0.0
10 10 I 10 ' 10+ r‘ 0.5
I -1.0
-1.5
0+, + 01, + + 04, + + 0+, + +
0 10 20 30 0 10 20 30 0 10 20 30 0 20 30
,SNR T-LoHo STGP FL GOSCAR BGL BayesMSG
MSPE
0,2 68.5(30.0) 93.4(17.1) 85.0(20.0) 138.2(5.6) 136.2(5.8) 156.1(77.0)
0,4 24.4(19.6) 86.3(15.8) 55.8(14.2) 133.6(5.8) 132.3(5.7) 124.5(27.8)
3,2 25L.0(112.0)  278.0(53.0)  341.0(130) 532.3(84.5) 483.2(60.3) 684.5(925.2)
3,4 59.7(23.2) 163.9(21.6) 115.8(36.1) 335.0(48.3) 213.4(27.4) 439.5(74.6)
RI
0,2 0.88(0.06) 0.72(0.09) 0.47(0.12) 0.28(0.00) 0.28(0.00) 0.42(0.12)
0,4 0.95(0.05) 0.72(0.10) 0.46(0.07) 0.28(0.00) 0.28(0.00) 0.39(0.10)
3,2 0.87(0.04) 0.79(0.04) 0.58(0.12) 0.28(0.00) 0.28(0.00) 0.40(0.13)
3,4 0.95(0.02) 0.80(0.03) 0.57(0.10) 0.28(0.00) 0.28(0.00) 0.29(0.02)
Time
0,4 107.9(3.8) 339.9(16.7)  110.4(5.9) 0.11(0.03)  956.2(23.3) 52.9(50.8)
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Real data analysis

Anomaly Detection in Road Networks

(Revisiting the example of [Wang et al., 2016]) NYC Pride March event held on
12:00 - 14:00, June 26, 2011 which causes traffic congestion. Goal: detect clusters
on road network which have different taxi pickup/dropoff patterns from usual.
("’0% / ” 7 Manhattan road graph
)%"s//
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Construct Manhattan road graph G = (V, E) with |V| = 3748 and |E| = 8474
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Real data analysis

Anomaly Detection in Road Networks

Event location Unfiltered Signal T-LoHo post. median estimate Fused Lasso estimate
4085~
logdiff
© 40.80- # A A ! 2
2
B 0
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(Left two panels) 2011 NYC pride event route and unfiltered signal. Log-difference value
below 0 indicates lower pickup/dropoff frequency than usual. (Right two panels) T-LoHo
and FL estimates. (Bottom right subplots) Fitted value comparison zoomed along the
parade route, 5th Ave.&9th St. to 5th Ave.&36th St.
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Real data analysis

Conclusion

@ We proposed T-LoHo model, a flexible Bayesian Group Sparsity and
Smoothing Regularization method on large graphs.
@ Main properties:
o Can be adapted to various hierarchical model settings;
o Flexible sparsity and group learning accommodating structural assumptions for
easy interpretation;
o Allows a full Bayesian inference.
o Future work:
o When we have weighted graph G = (V, E, wp) instead of G = (V, E).
o Model variations within active groups.

Thank You!
e-mail: c.lee@stat.tamu.edu (Changwoo Lee)
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