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Introduction

Beyond Sparsity in High-dimensional Models

High-dimensional models: the number of parameters p exceeds the sample size n

Sparsity Assumption
- Assumes p-dimensional parameter β ∈ Rp has many zero components
- Avoids overfitting & Improves predictive accuracy and interpretation

Sparse Homogeneity Assumption
- Assumes β has clustered patterns and many possibly clustered zeros
- Plausible when β has a pre-known structure (e.g. time, image, . . . )

Sparsity Assumption:
‘A needle in a haystack’

Sparse Homogeneity Assumption:
‘Bunches of needles in a haystack’
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Introduction

Sparse Homogeneity and Graph Structured Parameters

Examples of models under the sparse homogeneity assumption:
Fused lasso(FL)[Tibshirani et al., 2005]: for time-neighboring coefficients β,

β̂ = argminβ

{
0.5‖y − Xβ‖2

2 + λ
∑p

j=2 |βj − βj−1|+ γ
∑p

j=1 |βj |
}

Generalized fused lasso[Tibshirani et al., 2011]: consider an undirected
graph G = (V ,E ) with |V | = p which represents a pre-known structure of β

β̂ = argminβ

0.5‖y − Xβ‖2
2 + λ

∑
(j,k)∈E

|βj − βk |+ γ

p∑
j=1

|βj |


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Model Description Tree-based graph partition prior

Bayesian Model under Sparse Homogeneity

Here we propose a prior model on β which induces clustered sparsity. It delivers
full Bayesian inference for model parameters, including the number of clusters.

Let Π = {C1, . . . , CK} be a graph partition of G .
First we introduce a tree-based prior on Π using random spanning tree/forest.
Here Π can be represented through cuts of spanning forest of G :

Proposition 1(full coverage of graph partition with cuts of spanning forest)

Let G =(V ,E ) be a graph with nc connected components and Π={C1, . . . , CK}
be an arbitrary graph partition of G . There exists a spanning forest F=(V ,EF )
with |EF |= |V | − nc , and a set of cut-edges EC ⊂ EF with |EC | = K − nc such
that the induced cut of F is Π.
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Model Description Tree-based graph partition prior

A Bayesian Random Spanning Forest Partition Prior

We specify a prior on Π through spanning forest F and the number of clusters K .
Specifically, we have a prior on spanning forest space by choosing F be the

minimum spanning forest of G with random edge weights wij
iid∼ Unif(0, 1):

F = MSF({wij}), wij
iid∼ Unif(0, 1) (uniform edge weights on a graph)

p(K = k) ∝ (1− c)k , k = nc , . . . ,K (geometric prior on #(clusters))

p(Π | F ,K ) ∝ 1(|Π| = K and is induced by F) (uniformly select K − nc cut-edges)

Extension of [Luo et al., 2021], but different from [Teixeira et al., 2019].

c ∈ [0, 1) controls the model size, c closer to 1 penalizes large #(clusters).

After F and K are given, Π is determined by selecting K − nc cut-edges
uniformly at random to get a graph partition Π of size K .
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Model Description Low-rank multivariate horseshoe prior

Bayesian Graph Structured Sparsity

Given a graph partition Π, we can construct a K × p matrix Φ from Π:

Φkj = 1/
√
|Ck | if j ∈ Ck and 0 otherwise, k = 1, . . . ,K , j = 1, . . . , p

We propose to use horseshoe prior[Carvalho et al., 2010] to induce sparsity:

β |σ2, τ 2,Λ,Π ∼ Np(0, σ2τ 2 Φ>ΛΦ︸ ︷︷ ︸
rank K

), Λ := diag(λ2
1, . . . , λ

2
K )

λk
iid∼ C+(0, 1), τ ∼ C+(0, τ0), p(σ2) ∝ 1/σ2

Figure: Illustrative example of graph partitioning and corresponding parameters when
β ∈ R5 forms K = 3 clusters, C1 = {1}, C2 = {2, 4}, C3 = {3, 5}.
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Model Description T-LoHo

T-LoHo: Tree-based Low-rank Horseshoe

The p × p covariance matrix Φ>ΛΦ has a low-rank(rank K << p)

Probability density of Np(0, σ2τ 2Φ>ΛΦ) lies on rowsp(Φ) with dimension K

Row space of Φ restricts βi = βj if βi and βj lies in a same cluster

By considering transformation β̃ := Φβ, we have β̃ ∼ NK (0, σ2τ 2Λ)

Since Φ> is M-P pseudoinverse of Φ, we can recover β = Φ>β̃

In summary, we propose a Bayesian hierarchical model with (1) Tree-based prior
[Π|F ,K ][F ][K ] and (2) Low-rank horseshoe prior [β|σ2, τ 2,Λ,Π][σ2][τ 2][Λ]

T-LoHo: Tree-based Low-rank Horseshoe Model
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Model Description T-LoHo

T-LoHo with linear model

T-LoHo prior can be naturally incorporated into a linear model. With response
vector y ∈ Rn and column-standardized design matrix X ∈ Rn×p,

y = Xβ + ε, ε ∼ Nn(0, σ2In)

β ∼ T-LoHo with a (known) undirected graph G

Denote set of parameters Θ := (β̃, σ2,Λ, τ,Π,K ,F) and X̃ := XΦ> so that
X̃β̃ = XΦ>Φβ = Xβ. Then the posterior p(Θ|y) becomes

p(Θ|y) ∝ Nn(y |X̃β̃, σ2In)×NK (β̃|0, σ2τ 2Λ)× 1/σ2

× (1 + τ 2)−1
∏K

k=1(1 + λ2
k)−1 ×

(
p−nc
K−nc

)−1 × (1− c)K × 1

where the last line is the product of priors p(τ)
∏K

k=1 p(λk)p(Π|K ,F)p(K )p(W ).
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Posterior Inference and Theoretical Properties Posterior Sampler

Posterior Inference

We design a reversible-jump MCMC[Green, 1995] algorithm to sample from Θ|y :
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Posterior Inference and Theoretical Properties Posterior Sampler

Posterior Inference

Step 1 explores graph partitions of G by updating Π,K , and F . It performs one of
the four possible moves: (1) split (2) merge (3) change(split & merge) (4) hyper.
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Posterior Inference and Theoretical Properties Posterior Sampler

Computation Strategies

In step 2: jointly update τ, σ2,β using a blocked Gibbs sampler of
[Johndrow et al., 2020] to improve mixing.

In step 3, update Λ using a slice sampler.

Computation bottleneck: likelihood calculation which involves calculation
of Σ−1

n×n and |Σn×n|, where Σn×n = In + τ 2X̃ΛX̃> (O(n3), expensive!).

Reduce the rank from n to K by applying Woodbury formula,

Σ−1
n×n = In − X̃(τ−2Λ−1 + X̃>X̃︸ ︷︷ ︸

(Σ∗
K×K

)

)−1X̃>

Update the Cholesky decomposition of Σ∗k×k with rank-1 update

[Golub and Van Loan, 2013, Sec. 6.5.4] when X̃ changes. Use the diagonal
part updating scheme when τ or Λ changes.
Computation complexity: O(max{nK ,K 3}) per iteration, excluding step 1-d
which takes O(m log p) with m = |E |.
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Posterior Inference and Theoretical Properties Horseshoe prior and clustering

Clustering effect of T-LoHo

The difference of parameters βi − βj has an important role in clustering:
- `1 penalty(FL)[Tibshirani et al., 2005], `0 penalty[Fan and Guan, 2018]
- Prior on βi − βj , e.g. Laplace[Kyung et al., 2010], t[Song and Cheng, 2020]

But putting a prior directly on the difference of parameters βi − βj has many
limitations when G has many edges.

T-LoHo does not directly put prior on the difference βi − βj , it puts
multivariate prior on β with low-rank covariance structure.

Q. What are the properties of induced prior on βi − βj when β ∼ T-LoHo?

A. Horseshoe component of T-LoHo not only introduces shrinkage but also
has a clustering effect to facilitate homogeneity, compared to the usual
Gaussian prior.
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Posterior Inference and Theoretical Properties Horseshoe prior and clustering

When β1, β2
iid∼ πHS(β) =

∫∞
0
N (β|0, σ2τ 2λ2)C+(λ|0, 1)dλ, it induces prior on

standardized difference δ = (β1 − β2)/σ ∼ π∆ where

π∆(δ) =

∫ ∞
0

N (δ|0, v)
2

πτ 2
√

v/τ 2 + 1(v/τ 2 + 2)
dv

Horseshoe

Figure: Joint density f (x , y) = πHS(x)πHS(y) overlaid with marginal density of
(x − y) ∼ π∆ shown as red.
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Posterior Inference and Theoretical Properties Horseshoe prior and clustering

Clustering Effect of T-LoHo

For simplicity, we assume X = In. In step 1-b(merge), we update partition Π based
on the acceptance probability min{1, (1− c)−1 × L}. Term (1− c) is from the
penalization prior p(K ) ∝ (1− c)K , and L is a likelihood ratio. For example,

L =
p(y |M1)

p(y |M2)
=

∫
p(y1, ..., y10|β)p(β)dβ∫

p(y1, ..., y6|β1)p(β1)dβ1

∫
p(y7, ..., y10|β2)p(β2)dβ2

=⇒ L is the Bayes factor of Bayesian two-sample t test[Gönen et al., 2005],

M1 : µ1 = µ2, M2 : µ1 6= µ2, BF12 =
P(data |M1)

P(data |M2)

(Note that for step 1-a(split), L is simply inverted.)
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Posterior Inference and Theoretical Properties Horseshoe prior and clustering

Clustering Effect of T-LoHo

Following [Gönen et al., 2005], we reparametrize δ := (µ1 − µ2)/σ with prior p(δ)
which is a parameter of interest and put noninformative prior p(µ1+µ2

2 , σ2) ∝ 1/σ2

on nuisance parameters. Then the Bayes factor BF12 is a function of two-sample t
statistic

t =
ȳ1 − ȳ2

sp/
√
N
, where sp = pooled sd, N = (n−1

1 + n−1
2 )−1

Q. What are the properties of induced prior on βi − βj when β ∼ T-LoHo?

We compare BF12 when δ ∼ N (0, 1) versus δ ∼ π∆(induced by T-LoHo).
Scenarios:

(Balanced groups) n1 : n2 = 1 : 1 with increasing ν = n1 + n2 − 2,

(Unbalanced groups) n1 : n2 = 9 : 1 with increasing ν.
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Posterior Inference and Theoretical Properties Horseshoe prior and clustering

Clustering Effect of T-LoHo
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Figure: Comparison of Bayes factor between Horseshoe and Gaussian prior under
different (ν,N) settings. Higher Bayes factor implies favoring H0 : µ1 = µ2

When effect size |t| is small, horseshoe more strongly favors 1-group over 2-groups.
In contrast when |t| is big, horseshoe more strongly favors 2-groups over 1-group.
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Posterior Inference and Theoretical Properties Horseshoe prior and clustering

Posterior Consistency

Assumptions:

Theorem 1 (Posterior contraction)

Under Assumptions (A-1) to (A-4), there exists a large enough constant M1 > 0
and εn �

√
g∗n log p/n such that the posterior distribution satisfies

πn (‖β − β∗‖2 ≥ M1σ
∗εn | y) ≤ exp(−c1nε

2
n) with probability 1− exp(−c2nε

2
n)

for some constants c1 > 0 and c2 > 0.

Changwoo Lee (Texas A&M Univ.) T-LoHo (Tree-based Low-rank Horseshoe) NeruIPS 2021 17 / 25



Simulation and Real data results

Simulation Settings

Scalar-on-Image regression model example similar to [Kang et al., 2018]

Set graph G be a 30× 30 lattice graph which represents 2-D image.

Predictors Xi ∈ R900 lying on a graph are generated from iid normal (ϑ = 0)
or mean zero Gaussian process(GP) with exponential kernel (ϑ > 0).

True coefficient β ∈ R900 is sparse(84% zero) with irregular cluster shapes
with sharp discontinuities(figure next page)

Scalar responses yi ∈ R, i = 1, . . . , 100 are generated with Gaussian noise
with noise variance σ2 depending on SNR ∈ {2, 4}
Competing methods:

Soft-thresholded GP(STGP)[Kang et al., 2018]
Sparse fused lasso(FL) [Tibshirani et al., 2011]
Graph OSCAR (GOSCAR) [Yang et al., 2012]
Bayesian graph Laplacian (BGL) [Liu et al., 2014]
Spike-and-slab Laplacian (BayesMSG) [Kim and Gao, 2020]

Performance measure: Mean square prediction error(MSPE), Rand index(RI)
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Simulation and Real data results

Simulation Results

0

10

20

30

0 10 20 30

(a) True ß

0

10

20

30

0 10 20 30

(b) T-LoHo

0

10

20

30

0 10 20 30

(c) STGP

0

10

20

30

0 10 20 30

(d) Fused Lasso

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Changwoo Lee (Texas A&M Univ.) T-LoHo (Tree-based Low-rank Horseshoe) NeruIPS 2021 19 / 25



Real data analysis

Anomaly Detection in Road Networks

(Revisiting the example of [Wang et al., 2016]) NYC Pride March event held on
12:00 - 14:00, June 26, 2011 which causes traffic congestion. Goal: detect clusters
on road network which have different taxi pickup/dropoff patterns from usual.

40.70

40.75

40.80

40.85

−74.000 −73.975 −73.950 −73.925
lon

la
t

Manhattan road graph

Construct Manhattan road graph G = (V ,E ) with |V | = 3748 and |E | = 8474
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Real data analysis

Anomaly Detection in Road Networks

5th Ave. & 9th St. 
           ~ 5th Ave. & 36th St.
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(Left two panels) 2011 NYC pride event route and unfiltered signal. Log-difference value
below 0 indicates lower pickup/dropoff frequency than usual. (Right two panels) T-LoHo
and FL estimates. (Bottom right subplots) Fitted value comparison zoomed along the
parade route, 5th Ave.&9th St. to 5th Ave.&36th St.
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Real data analysis

Conclusion

We proposed T-LoHo model, a flexible Bayesian Group Sparsity and
Smoothing Regularization method on large graphs.
Main properties:

Can be adapted to various hierarchical model settings;
Flexible sparsity and group learning accommodating structural assumptions for
easy interpretation;
Allows a full Bayesian inference.

Future work:
When we have weighted graph G = (V ,E ,w0) instead of G = (V ,E).
Model variations within active groups.

Thank You!
e-mail: c.lee@stat.tamu.edu (Changwoo Lee)
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