

Learning to Draw

Emergent Communication through Sketching

Daniela Mihai and Jonathon Hare

{adm1g15, jsh2}@soton.ac.uk

Vision, Learning and Control Group School of Electronics and Computer Science University of Southampton

- Emergent communication is the study of how agents learn to utilise their communication channel to convey information to solve a task.
- Historically, most literature has focussed on token-based communication (e.g. modelling written language).

- Emergent communication is the study of how agents learn to utilise their communication channel to convey information to solve a task.
- Historically, most literature has focussed on token-based communication (e.g. modelling written language).
- Referential games are often used as a playground.

Referential Communication Games

A Referential Game*: Alice must communicate to Bob which image she has (Bob has that image, plus many distractors). Communication is one-way only. Alice knows nothing about the distractors Bob has (they could all be white boats!).

^{*} David K. Lewis. Convention: A Philosophical Study. Wiley-Blackwell, 1969.

- Emergent communication is the study of how agents learn to utilise their communication channel to convey information to solve a task.
- Historically, most literature has focussed on token-based communication (e.g. modelling written language).
- Referential games are often used as a playground.
- We seek to instead look at visual communication channels in referential games.

Challenges and Questions (I)

- Understanding "what" is being communicated is hard.
 - Could a constrained visual communication channel be more interpretable?

Challenges and Questions (II)

- Training of agents is sensitive to "hashing" solutions whereby communication is achieved in a way that relies on non-semantic features, or features that a human wouldn't or couldn't use.
 - What inductive biases in the model and during training are needed to stop this happening?

Challenges and Questions (III)

 Can we achieve successful Agent-Human communication with a model trained with inter-Agent self-supervised learning?

A model for learning to communicate by drawing

A model for learning to communicate by drawing

The Game Environment

Objective is for receiver to correctly guess sender's image amongst distractors.

A model for learning to communicate by drawing The Game Environment

Three game variants:

Original: receiver's images are 99 randomly sampled distractors + target

Object-Oriented:

receiver's images are from different classes.

In **same** target matches sender.

In different target matches class of sender's image.

A model for learning to communicate by drawing

The Agents' Architecture: Overview

Agents consist of a visual system plus a task-specific module.

A model for learning to communicate by drawing

The Agents' Architecture: Visual System

The visual system is a VGG16 with fixed pretrained weights from ImageNet or StylizedImageNet followed by a learned linear projection.

A model for learning to communicate by drawing

The Agents' Architecture: Sender agent

The sender agent encodes the input with the visual system and predicts the start and end points of a set of lines and renders these into an image.

We developed a differentiable rasteriser* that allows gradients to flow between the resultant raster and the line parameters.

^{*} Daniela Mihai and Jonathon Hare. "Differentiable Drawing and Sketching." arXiv preprint arXiv:2103.16194 (2021).

A model for learning to communicate by drawing

The Agents' Architecture: Receiver agent

The receiver agent encodes each of its inputs with the visual system, and projects them into a learned space of features with an MLP.

A model for learning to communicate by drawing

The Agents' Architecture: Receiver agent

The agent uses the inner product between the sketch feature and each image feature to compute a score for each image.

A model for learning to communicate by drawing Training

A multiclass hinge loss* is used with a gradient-based optimiser (Adam) to learn the parameters of both agents.

* Other losses available: crossentropy works well too

A model for learning to communicate by drawing

Making the sender's sketches more perceptually relevant

The sketches created by the sender will often look random.

Incorporating a perceptual loss will be shown to help.

A model for learning to communicate by drawing

Making the sender's sketches more perceptually relevant

We experiment with a simple* perceptual loss computed across the layers of internal representation of the VGG16-based visual system.

^{*} Inspired by: Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. "The unreasonable effectiveness of deep features as a perceptual metric." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 586-595. 2018.

Can our agents communicate between themselves?

STL-10 images, 20 lines per sketch

Can our agents communicate between themselves?

STL-10 images, 20 lines per sketch

Can our agents communicate between themselves?

STL-10 images, 20 lines per sketch

Can our sender agent communicate with a Human receiver?

Human participants played 30 games in 5 different settings.

In total we recorded 1800 games.

Can our sender agent communicate with a Human receiver?

Game	Loss	Lines	Agent comm. rate	Human comm. rate	Human class comm. rate
original original oo diff	$l = l_{game}$ $l = l_{game} + l_{perceptual}$	20 20 50 20 50	100% $93.3%$ $100%$ $83.3%$ $90.0%$	$8.3\% (\pm 5.4)$ $38.3\% (\pm 2.5)$ $37.2\% (\pm 5.9)$ $23.9\% (\pm 6.2)$ $38.9\% (\pm 9.9)$	$15.0\% (\pm 2.5)$ $55.6\% (\pm 7.1)$ $47.8\% (\pm 7.4)$ $23.9\% (\pm 6.2)$ $38.9\% (\pm 9.9)$

Can our sender agent communicate with a Human receiver?

Game	Loss	Lines	Agent comm. rate	Human comm. rate	Human class comm. rate
original original	$l = l_{game}$ $l = l_{game} + l_{perceptual}$	20 20 50 20 50	100% $93.3%$ $100%$ $83.3%$ $90.0%$	$8.3\% (\pm 5.4)$ $38.3\% (\pm 2.5)$ $37.2\% (\pm 5.9)$ $23.9\% (\pm 6.2)$ $38.9\% (\pm 9.9)$	$15.0\% (\pm 2.5)$ $55.6\% (\pm 7.1)$ $47.8\% (\pm 7.4)$ $23.9\% (\pm 6.2)$ $38.9\% (\pm 9.9)$

Use of the perceptual loss significantly improves the ability of a human to play the game successfully.

Can our sender agent communicate with a Human receiver?

Game	Loss	Lines	Agent comm. rate	Human comm. rate	Human class comm. rate
original original	$l = l_{game}$ $l = l_{game} + l_{perceptual}$	20 20 50 20 50	100% 93.3% 100% 83.3% 90.0%	$8.3\% (\pm 5.4)$ $38.3\% (\pm 2.5)$ $37.2\% (\pm 5.9)$ $23.9\% (\pm 6.2)$ $38.9\% (\pm 9.9)$	$15.0\% (\pm 2.5)$ $55.6\% (\pm 7.1)$ $47.8\% (\pm 7.4)$ $23.9\% (\pm 6.2)$ $38.9\% (\pm 9.9)$

Humans are better at determining the class of the object in the sketch than recognising the specific image which matches.

How does a shape-bias change the sketches?

ImageNet weights

 $78.46\% (\pm 2.0)$

Stylized-ImageNet weights

 $77.09\% (\pm 1.9)$

Other experiments

- In the paper we also ask:
 - How does model capacity influence the communication channel?
 - Does the object-oriented setup make sketches more recognisable as the type of object?
 - How does weighting the perceptual loss change the sketches?
 - Do the models learn to pick out salient features?

- We have demonstrated that:
 - It is possible to build agents that successfully learn to communicate through sketches.
 - We can train the agents through self-play using end-to-end gradient-based optimisation.

- We have demonstrated that:
 - It is possible to build agents that successfully learn to communicate through sketches.
 - We can train the agents through self-play using end-to-end gradient-based optimisation.
 - Appropriate inductive biases can be added during training which encourage the agents to communicate in a visibly more interpretable manner.
 - Further, through a study with human participants we have demonstrated that it is
 possible for a trained sketching agent to successfully communicate with humans.

What next?

- Improved drawing (curves, shapes, etc.).
- Improved models: Could a more advanced visual system be incorporated?
- Improved understanding: explore what groups of strokes "mean", explore if the sketches produced could be considered to be "compositional".

Thank you for listening!