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Population risk minimization

Consider the following (non-convex) optimization problem:

min Ly, (w) = Bz [((w, Z)]
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Population risk minimization

Consider the following (non-convex) optimization problem:

min L, (w) = Ezv, [0(w,Z)]

weW T A

loss function

data point
following distribution W



Neural network

Consider the following (non-convex) optimization problem:

min Ly, (w) = Bz [((w, Z)]

weight matrices I

(fw(X) =Y)? whereZ = (X,Y)

fuw



Empirical risk minimization
Consider the following (non-convex) optimization problem:

min Ly, (w) = Bz [((w, Z)]

In practice,

i.d.




Error decomposition

Training set S output W

min Lg(w)

weW I

L,(W)=Lsg(W)+ L,(W)— Ls(W)

T

generalization gap




Expected generalization gap

Training set S output W

min Lg(w)

weW I

E[L,(W) — Ls(W)]

T

Expected generalization gap




Today’s focus

« VC-dimension
 Rademacher complexity
 Algorithmic stability
 PAC-Bayes

 Information theory



Information-theoretic generalization bound

Theorem (Xu and Raginsky, 2017). Suppose ¢(w, Z) is o-sub-Gaussian under p. for all w.

output W
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Information-theoretic generalization bound

Proposition (Bu et al., 2020). Suppose ¢(w, Z) is o-sub-Gaussian under . for all w.

n

E[Lu(W) — LsW)]| < = 3" V22 T(W;Z,).

=1

Training set S output W
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Pros

Proposition (Bu et al., 2020). Suppose ¢(w, Z) is o-sub-Gaussian under . for all w.

B L,(W) — Lo(W)]| < = 37 /207 T(W; Z0),

-

Algorithm/distribution dependent
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Pros

Proposition (Bu et al., 2020). Suppose ¢(w, Z) is o-sub-Gaussian under . for all w.

n

E[Lu(W) — LsW)]| < = 3" V22 T(W;Z,).

1=1

4 )

* Mild assumption

\ _/

A bounded loss is sufficient:

if £(-,-) € [0, A], then o = 4



cons

Proposition (Bu et al., 2020). Suppose ¢(w, Z) is o-sub-Gaussian under . for all w.

n

E[Lu(W) — LsW)]| < = 3" V2P T(W;Z).

1=1

-

-

Mutual information is hard to compute

~N

J
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SGLD is popular in practice

Privacy guarantee

Mitigate overfitting

Easy to analyze in theory

tensorflow/privacy
Library for training machine learning models with

privacy for training data

A 42 ® 56 w1k ¥ 321 O
Contributors Issues Stars Forks
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Opacus
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SGLD: mini-batches

mini-batch S1

Training set S

L

0 a2 6““’“"’":
e }

» \\

mini-batch S,,,




SGLD: update rule

choose W, arbitrarily mini-batch Si

fort=1,.---.,T

W, =Wy — Vi b(We_1,Sp,) + /N

T A Bt

learning rate

mini-batch gradient

[Welling and Teh, 2011]




SGLD: update rule

choose W, arbitrarily
fort=1,---,T

/2
Wi =W;3 — Vi, l(Wi_1,SpB,) + ﬁN

6tT
A

Gaussian
noise

inverse
temperature
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SGLD: output

choose W arbitrarily

fort=1,.---.,T
2m
Wi =W;3 — Vi, l(Wi_1,SpB,) + \/ 5—N
¢

output: W = f(Wl, R 7WT)

20



SGLD: output

choose W arbitrarily

fort=1,.---.,T
/277t
W, =W,_; — ntvwg(wt—la SBt) + 5—N
t

output: W = f(Wl, R 7WT)

Examples:

* f(W17 7WT):WT

* f(Wy,-- -, Wyp) = Fad i
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Our generalization bound

Theorem. Suppose ¢(w,Z) is o-sub-Gaussian under p. for all w.

\/_0

IE[L, (W) — Ls(W)]] Z > B - Var(Vul(We_1,S;)).

teT;
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Our generalization bound

Theorem. Suppose ¢(w,Z) is o-sub-Gaussian under p. for all w.

\/_0

IE[L, (W) — Ls(W)]] Z > B - Var(Vul(We_1,S;)).

teT;

b: mini-batch size

o: sub-Gaussian constant

e n: number of samples

B inverse temperature

¢ learning rate
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Our generalization bound

Theorem. Suppose ¢(w,Z) is o-sub-Gaussian under p. for all w.

E[L,(W) — Ls(W)]| \/_"

Z > By - Var (Vi l(We_1,S;)).

teT;

b: mini-batch size

o: sub-Gaussian constant

e n: number of samples

B inverse temperature

7¢: learning rate

4 )
Recall the update rule:
2
W, = W, — Vol (W _1,S5,) + %N
t

\_ J




Our generalization bound

Theorem. Suppose ((w,Z) is o-sub-Gaussian under p for all w.

E[L,(W)— Ls(W

> B - Var(Vul(We_1,S;)).
teT;

mini-batch

f“‘
1
4
1
L 1
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Our generalization bound

Theorem. Suppose ((w,Z) is o-sub-Gaussian under p for all w.

E[L,(W)— Ls(W

> B - Var(Vl(We_1,S;)).
teT;

7; contains the indices of iterations in which S; is used

mini-batch
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If the number of iterations increases,

Theorem. Suppose ((w,Z) is o-sub-Gaussian under p for all w.

E[L,(W)— Ls(W

> B - Var(Vl(We_1,S;)).
teT;

“ I

more terms

invariant

mini-batch
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Our generalization bound

Theorem. Suppose ¢(w,Z) is o-sub-Gaussian under p. for all w.

\/_0

[E[L,(W) — Ls(W)]| Z > Bume - Var(Vil(Wy_1,S;)).

teT;

Measure sharpness of loss landscape
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Our generalization bound

The journey matters more than the destination.
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Experiment on MINIST: Label corruption

Theorem. Suppose ((w,Z) is o-sub-Gaussian under p. for all w.

E L (W) — Ls(W)]| < b“z " Bun - Var(Vul(Wo_1.S;)).
teT;

« Vary label corruption level (alpha)

-
o

« Train 3-layer neural networks on MNIST using SGLD

o o
()] oo

Training accuracy
o
~

I
N
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Experiment on MNIST: Label corruption

I o o =
IS o o =}

Training accuracy

I
N

Theorem. Suppose ((w,Z) is o-sub-Gaussian under p. for all w.

ba

E[L,(W) — Ls(W)]| < Z Zﬁmt Var (V. t(Wi—1,S;)).

teT;

« Vary label corruption level (alpha)

e Train 3-layer neural networks on MNIST using SGLD

« Run 1500 epochs until the training accuracy = 1

0 200 400 600 800 1000 1200 1400
Epoch
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Training accuracy

-
o

o
0

o
o
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o
N

0

Label corruption

Theorem. Suppose ((w,Z) is o-sub-Gaussian under p for all w.

200

[E[Lu(W) = Ls(W)]| <
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teT;
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Label corruption

Theorem. Suppose ((w,Z) is o-sub-Gaussian under p for all w.

\/_0

B [Lu(W) = Ls(W)]|

Z Zﬁmt Var (V,£(W;_1,S;)).

teT;

Both become stable

loss landscape
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When the algorithm converges, the variance of gradients become negligible.
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Network width

Theorem. Suppose ¢(w,Z) is o-sub-Gaussian under p. for all w.

\/_ bo
[E[L.(W) — Ls(W)]| Z 3" Bune - Var(V,6(We—1,S;)).
teT;
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Take away

Our bound can:

* be computed from data
« explain some generalization phenomena
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Recall our generalization bound

Theorem. Suppose ¢(w,Z) is o-sub-Gaussian under p. for all w.

\/_0

IE[L, (W) — Ls(W)]] Z > B - Var(Vul(We_1,S;)).

teT;

Here W = f(Wy,--- ,Wy) for an arbitrary function f

37



Upside

Theorem. Suppose ¢(w,Z) is o-sub-Gaussian under p. for all w.

\Fa

IE[L, (W) — Ls(W)]] Z > B - Var(Vul(We_1,S;)).

teT;

Here W = f(Wy,--- ,Wy) for an arbitrary function f

Can be applied to many settings

Examples:
* f(W17"'7WT):WT
° f(W:[,'.. 7WT) — W1++WT
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Downside

Theorem. Suppose ¢(w,Z) is o-sub-Gaussian under p. for all w.

SUP [E (L, (W) — Ls(W)]] ﬁ’z S~ o Var(Vul(We . S,).

f teT;

Here W = f(Wy,--- ,Wy) for an arbitrary function f

A uniform bound for any function f
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Question

Theorem. Suppose ¢(w,Z) is o-sub-Gaussian under p. for all w.

E[L,(W) — Ls(W)]| \r"

Z Zﬂmt Var (V,£(W;_1,S;)).

teT;

Here W = f(Wy,--- ,Wy) for an arbitrary function f

For W = W, can we have a sharper bound?

40



Projected Differentially-Private SGD (DP-SGD)

choose W, arbitrarily
fort=1,---,T

W: = Projyy, (Wi—1 — 17 (9(Wi-1,Z:) +N))
output: W
Assumptions:

e sampling without replacement

o |lg(w,z2)||2 < K forany w, z
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time-decaying factor

Theorem. Suppose ((w,Z) is o-sub-Gaussian under y. for all w.

E (L, (Wr) — Ls(Wr)]| < 257 \/var(g (Wi_1,2)) - 7.

n
t=1

q € (0,1)

Enables the impact of early iterations to reduce with time

42



Proof

Key proof techniques: properties of Gaussian channels

FIGURE 9.1. Gaussian channel.

Image is from [Cover and Thomas, 1999]
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Related works

« SGLD generalization bounds: [Mou et al., 2018], [Li et al., 2019], [Pensia et al., 2018],

[Bu et al., 2020], [Negrea et al., 2019], [Haghifam et al., 2020], [Rodriguez-Galvez et al., 2020]
[Neu, 2021]

* Privacy amplification by iteration: [Feldman et al., 2018], [Asoodeh et al., 2020]
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open questions

* Privacy can also be amplified by subsampling and shuffling.
Can they improve algorithmic generalization?

[Chaudhuri and Mishra, 2006; Erlingsson et al., 2019]
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Related works and open questions

* Privacy can also be amplified by subsampling and shuffling.
Can they improve algorithmic generalization?

* New definition of sharpness

« Tighten the decay factor.
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Related works and open questions

* Privacy can also be amplified by subsampling and shuffling.
Can they improve algorithmic generalization?

* New definition of sharpness

« Tighten the decay factor.

48



Thanks for watching!



