# Analyzing the Generalization Capability of SGLD Using Properties of Gaussian Channels

Hao Wang, Yizhe Huang, Rui Gao, Flavio P. Calmon

hao\_wang@g.harvard.edu
yizhehuang@utexas.edu
rui.gao@mccombs.utexas.edu
flavio@seas.harvard.edu





#### Outline

- Preliminary
  - Generalization analysis
  - An information-theoretic framework
- SGLD generalization bound
  - Definition
  - Our generalization bound
  - Experiments
- Generalization amplification by iteration
  - DP-SGD algorithm
  - Our generalization bound
- Related works and open questions

## Population risk minimization

$$\min_{w \in \mathcal{W}} L_{\mu}(w) \triangleq \mathbb{E}_{\mathsf{Z} \sim \mu} \left[ \ell(w, \mathsf{Z}) \right]$$

#### Population risk minimization



#### Population risk minimization



# Population risk minimization: Neural network



# Empirical risk minimization

Consider the following (non-convex) optimization problem:

$$\min_{w \in \mathcal{W}} L_{\mu}(w) \triangleq \mathbb{E}_{\mathsf{Z} \sim \mu} \left[ \ell(w, \mathsf{Z}) \right]$$

In practice,



#### Error decomposition



$$L_{\mu}(\mathbf{W}) = L_{S}(\mathbf{W}) + \underline{L_{\mu}(\mathbf{W}) - L_{S}(\mathbf{W})}$$
 generalization gap

## Expected generalization gap



$$\frac{\mathbb{E}\left[L_{\mu}(\mathbf{W}) - L_{\mathbf{S}}(\mathbf{W})\right]}{}$$
 Expected generalization gap

## Today's focus

- VC-dimension
- Rademacher complexity
- Algorithmic stability
- PAC-Bayes
- Information theory
- •

#### Information-theoretic generalization bound

**Theorem** (Xu and Raginsky, 2017). Suppose  $\ell(w, Z)$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathsf{W}) - L_{\mathsf{S}}(\mathsf{W})\right]| \leq \sqrt{\frac{2\sigma^2}{n}}I(\mathsf{W};\mathsf{S}).$$



#### Information-theoretic generalization bound

**Proposition** (Bu et al., 2020). Suppose  $\ell(w, Z)$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathbf{W}) - L_{\mathbf{S}}(\mathbf{W})\right]| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2\sigma^{2}I(\mathbf{W}; \mathbf{Z}_{i})}.$$



#### Pros and cons

**Proposition** (Bu et al., 2020). Suppose  $\ell(w, Z)$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathbf{W}) - L_{\mathbf{S}}(\mathbf{W})\right]| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2\sigma^{2}I(\mathbf{W}; \mathbf{Z}_{i})}.$$

- Algorithm/distribution dependentMild assumption

#### Pros and cons

**Proposition** (Bu et al., 2020). Suppose  $\ell(w, Z)$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathbf{W}) - L_{\mathbf{S}}(\mathbf{W})\right]| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2\sigma^{2}I(\mathbf{W}; \mathbf{Z}_{i})}.$$

- Algorithm/distribution dependent
  Mild assumption

A bounded loss is sufficient: if  $\ell(\cdot,\cdot) \in [0,A]$ , then  $\sigma = \frac{A}{2}$ 

#### Pros and cons

**Proposition** (Bu et al., 2020). Suppose  $\ell(w, Z)$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathbf{W}) - L_{S}(\mathbf{W})\right]| \leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2\sigma^{2} I(\mathbf{W}; \mathbf{Z}_{i})}.$$

Mutual information is hard to compute

#### **Outline**

- Preliminary
  - Generalization analysis
  - An information-theoretic framework
- SGLD generalization bound
  - Definition
  - Our generalization bound
  - Experiments
- Generalization amplification by iteration
  - o DP-SGD algorithm
  - Our generalization bound
- Related works and open questions

## SGLD is popular in practice

- Privacy guarantee
- Mitigate overfitting
- Easy to analyze in theory

#### tensorflow/privacy



Library for training machine learning models with privacy for training data





৪২ 42 Contributors

56

☆ 1k

**೪** 321

#### SGLD: mini-batches





#### SGLD: update rule



#### SGLD: update rule

choose  $W_0$  arbitrarily for  $t = 1, \dots, T$ 



#### SGLD: output

choose  $W_0$  arbitrarily for  $t = 1, \dots, T$ 

$$\mathbf{W}_t = \mathbf{W}_{t-1} - \eta_t \nabla_w \ell(\mathbf{W}_{t-1}, \mathbf{S}_{B_t}) + \sqrt{\frac{2\eta_t}{\beta_t}} \mathbf{N}$$

output:  $W = f(W_1, \dots, W_T)$ 

## SGLD: output

choose W<sub>0</sub> arbitrarily

for 
$$t = 1, \dots, T$$

$$\mathbf{W}_t = \mathbf{W}_{t-1} - \eta_t \nabla_w \ell(\mathbf{W}_{t-1}, \mathbf{S}_{B_t}) + \sqrt{\frac{2\eta_t}{\beta_t}} \mathbf{N}$$

output:  $W = f(W_1, \cdots, W_T)$ 

#### Examples:

- $f(\mathsf{W}_1,\cdots,\mathsf{W}_T)=\mathsf{W}_T$
- $f(W_1, \cdots, W_T) = \frac{W_1 + \cdots + W_T}{T}$

$$|\mathbb{E}\left[L_{\mu}(\mathsf{W}) - L_{\mathsf{S}}(\mathsf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \mathit{Var}(\nabla_{w} \ell(\mathsf{W}_{t-1}, \mathsf{S}_{j}))}.$$

$$|\mathbb{E}\left[L_{\mu}(\mathsf{W}) - L_{\mathsf{S}}(\mathsf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \textit{Var}(\nabla_{w} \ell(\mathsf{W}_{t-1}, \mathsf{S}_{j}))}.$$

- b: mini-batch size
- σ: sub-Gaussian constant
- *n*: number of samples
- $\beta_t$ : inverse temperature
- $\eta_t$ : learning rate

**Theorem.** Suppose  $\ell(w, \mathsf{Z})$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathsf{W}) - L_{\mathsf{S}}(\mathsf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t}} \cdot \textit{Var}(\nabla_{w} \ell(\mathsf{W}_{t-1}, \mathsf{S}_{j})).$$

- b: mini-batch size
- σ: sub-Gaussian constant
- *n*: number of samples
- $\beta_t$ : inverse temperature
- $\eta_t$ : learning rate

Recall the update rule:

$$\mathbf{W}_t = \mathbf{W}_{t-1} - \eta_t \nabla_w \ell(\mathbf{W}_{t-1}, \mathbf{S}_{B_t}) + \sqrt{\frac{2\eta_t}{\beta_t}} \mathbf{N}$$

**Theorem.** Suppose  $\ell(w, \mathsf{Z})$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathsf{W}) - L_{\mathsf{S}}(\mathsf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \mathit{Var}(\nabla_{w} \ell(\mathsf{W}_{t-1}, \mathsf{S}_{j}))}.$$



mini-batch

**Theorem.** Suppose  $\ell(w, \mathsf{Z})$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathbf{W}) - L_{\mathbf{S}}(\mathbf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \textit{Var}(\nabla_{w} \ell(\mathbf{W}_{t-1}, \mathbf{S}_{j}))}.$$

 $\mathcal{T}_j$  contains the indices of iterations in which  $S_j$  is used

mini-batch



#### If the number of iterations increases,

$$|\mathbb{E}\left[L_{\mu}(\mathbf{W}) - L_{\mathbf{S}}(\mathbf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \textit{Var}(\nabla_{w} \ell(\mathbf{W}_{t-1}, \mathbf{S}_{j}))}.$$
 more terms invariant







**Theorem.** Suppose  $\ell(w, \mathsf{Z})$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathsf{W}) - L_{\mathsf{S}}(\mathsf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \underbrace{\mathit{Var}(\nabla_{w} \ell(\mathsf{W}_{t-1}, \mathsf{S}_{j}))}_{}}.$$

Measure sharpness of loss landscape

**Theorem.** Suppose  $\ell(w, Z)$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathsf{W}) - L_{\mathsf{S}}(\mathsf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \mathit{Var}(\nabla_{w} \ell(\mathsf{W}_{t-1}, \mathsf{S}_{j}))}.$$

Variance of madients

The journey matters more than the destination.

$$|\mathbb{E}\left[L_{\mu}(\mathsf{W}) - L_{\mathsf{S}}(\mathsf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \mathit{Var}(\nabla_{w} \ell(\mathsf{W}_{t-1}, \mathsf{S}_{j}))}.$$



- Vary label corruption level (alpha)
- Train 3-layer neural networks on MNIST using SGLD

$$|\mathbb{E}\left[L_{\mu}(\mathsf{W}) - L_{\mathsf{S}}(\mathsf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \mathit{Var}(\nabla_{w} \ell(\mathsf{W}_{t-1}, \mathsf{S}_{j}))}.$$



- Vary label corruption level (alpha)
- Train 3-layer neural networks on MNIST using SGLD
- Run 1500 epochs until the training accuracy = 1

$$|\mathbb{E}\left[L_{\mu}(\mathsf{W}) - L_{\mathsf{S}}(\mathsf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \mathit{Var}(\nabla_{w} \ell(\mathsf{W}_{t-1}, \mathsf{S}_{j}))}.$$



**Theorem.** Suppose  $\ell(w, \mathsf{Z})$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathbf{W}) - L_{\mathbf{S}}(\mathbf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \textit{Var}(\nabla_{w} \ell(\mathbf{W}_{t-1}, \mathbf{S}_{j}))}.$$



When the algorithm converges, the variance of gradients become negligible.

#### **Experiment on MNIST: Network width**

$$|\mathbb{E}\left[L_{\mu}(\mathbf{W}) - L_{\mathbf{S}}(\mathbf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \textit{Var}(\nabla_{w} \ell(\mathbf{W}_{t-1}, \mathbf{S}_{j}))}.$$



#### Take away



### **Outline**

- Preliminary
  - Generalization analysis
  - An information-theoretic framework
- SGLD generalization bound
  - Definition
  - Our generalization bound
  - o Experiments
- Generalization amplification by iteration
  - DP-SGD algorithm
  - Our generalization bound
- Related works and open questions

### Recall our generalization bound

**Theorem.** Suppose  $\ell(w, \mathsf{Z})$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathbf{W}) - L_{\mathsf{S}}(\mathbf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \textit{Var}(\nabla_{w} \ell(\mathbf{W}_{t-1}, \mathbf{S}_{j}))}.$$

Here  $W = f(W_1, \dots, W_T)$  for an arbitrary function f

### Upside

**Theorem.** Suppose  $\ell(w, \mathsf{Z})$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathbf{W}) - L_{\mathsf{S}}(\mathbf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \textit{Var}(\nabla_{w} \ell(\mathbf{W}_{t-1}, \mathbf{S}_{j}))}.$$

Here  $W = f(W_1, \dots, W_T)$  for an arbitrary function f

#### Can be applied to many settings

#### Examples:

- $f(\mathsf{W}_1,\cdots,\mathsf{W}_T)=\mathsf{W}_T$
- $f(\mathbf{W}_1, \cdots, \mathbf{W}_T) = \frac{\mathbf{W}_1 + \cdots + \mathbf{W}_T}{T}$

#### Downside

**Theorem.** Suppose  $\ell(w, \mathsf{Z})$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$\sup_{\boldsymbol{f}} |\mathbb{E}\left[L_{\mu}(\mathbf{W}) - L_{\mathbf{S}}(\mathbf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \textit{Var}(\nabla_{w} \ell(\mathbf{W}_{t-1}, \mathbf{S}_{j}))}.$$

Here  $W = f(W_1, \dots, W_T)$  for an arbitrary function f

A uniform bound for any function f

### Question

**Theorem.** Suppose  $\ell(w, \mathsf{Z})$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$|\mathbb{E}\left[L_{\mu}(\mathbf{W}) - L_{\mathsf{S}}(\mathbf{W})\right]| \leq \frac{\sqrt{2b}\sigma}{2n} \sum_{j=1}^{m} \sqrt{\sum_{t \in \mathcal{T}_{j}} \beta_{t} \eta_{t} \cdot \textit{Var}(\nabla_{w} \ell(\mathbf{W}_{t-1}, \mathbf{S}_{j}))}.$$

Here  $W = f(W_1, \dots, W_T)$  for an arbitrary function f

For  $W = W_T$ , can we have a sharper bound?

# Projected Differentially-Private SGD (DP-SGD)

choose  $W_0$  arbitrarily for  $t = 1, \dots, T$ 

$$\mathbf{W}_{t} = \operatorname{Proj}_{\mathcal{W}} \left( \mathbf{W}_{t-1} - \eta \left( g(\mathbf{W}_{t-1}, \mathbf{Z}_{t}) + \mathbf{N} \right) \right)$$

output:  $W_T$ 

#### Assumptions:

- sampling without replacement
- $||g(w,z)||_2 \le K$  for any w,z

# Our generalization bound: time-decaying factor

**Theorem.** Suppose  $\ell(w, \mathsf{Z})$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

$$\left|\mathbb{E}\left[L_{\mu}(\mathsf{W}_{T})-L_{\mathsf{S}}(\mathsf{W}_{T})
ight]
ight|\leqrac{2\sigma}{n}\sum_{t=1}^{T}\sqrt{ extsf{Var}(g\left(\mathsf{W}_{t-1},\mathsf{Z}
ight))\cdot q^{T-t}}.$$
  $q\in\left(0,1
ight)$ 

Enables the impact of early iterations to reduce with time

#### **Proof**

**Theorem.** Suppose  $\ell(w, \mathsf{Z})$  is  $\sigma$ -sub-Gaussian under  $\mu$  for all w.

#### Key proof techniques: properties of Gaussian channels

Step 1:  $|\mathbb{E}[L_{\mu}(W_T) - L_{S}(W_T)]| \leq \frac{\sqrt{20}}{\pi} \sum \sqrt{I(W_T; Z_t)}$ 

[Bu et al., 2020]

Step 2:



Step 3:

FIGURE 9.1. Gaussian channel.

(How we obtain a computable bound)

### **Outline**

- Preliminary
  - Generalization analysis
  - An information-theoretic framework
- SGLD generalization bound
  - Definition
  - Our generalization bound
  - Experiments
- Generalization amplification by iteration
  - o DP-SGD algorithm
  - Our generalization bound
- Related works and open questions

- SGLD generalization bounds: [Mou et al., 2018], [Li et al., 2019], [Pensia et al., 2018], [Bu et al., 2020], [Negrea et al., 2019], [Haghifam et al., 2020], [Rodriguez-Galvez et al., 2020] [Neu, 2021]
- Privacy amplification by iteration: [Feldman et al., 2018], [Asoodeh et al., 2020]

- SGLD generalization bounds: [Mou et al., 2018], [Li et al., 2019], [Pensia et al., 2018], [Bu et al., 2020], [Negrea et al., 2019], [Haghifam et al., 2020], [Rodriguez-Galvez et al., 2020] [Neu, 2021]
- Privacy amplification by iteration: [Feldman et al., 2018], [Asoodeh et al., 2020]

- Privacy can also be amplified by subsampling and shuffling.
   Can they improve algorithmic generalization?
- New definition of sharpness
- Tighten the decay factor.

- SGLD generalization bounds: [Mou et al., 2018], [Li et al., 2019], [Pensia et al., 2018], [Bu et al., 2020], [Negrea et al., 2019], [Haghifam et al., 2020], [Rodriguez-Galvez et al., 2020] [Neu, 2021]
- Privacy amplification by iteration: [Feldman et al., 2018], [Asoodeh et al., 2020]

- Privacy can also be amplified by subsampling and shuffling.
   Can they improve algorithmic generalization?
- New definition of sharpness
- Tighten the decay factor.

- SGLD generalization bounds: [Mou et al., 2018], [Li et al., 2019], [Pensia et al., 2018], [Bu et al., 2020], [Negrea et al., 2019], [Haghifam et al., 2020], [Rodriguez-Galvez et al., 2020] [Neu, 2021]
- Privacy amplification by iteration: [Feldman et al., 2018], [Asoodeh et al., 2020]

- Privacy can also be amplified by subsampling and shuffling.
   Can they improve algorithmic generalization?
- New definition of sharpness
- Tighten the decay factor.

# Thanks for watching!