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Motivation Examples

Learning in a sequential environment is important. Some practical examples include...
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Motivation Examples

Learning in a sequential environment is important. Some practical examples include...

The environments are changing, which requires the model to update in an online fashion.
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Bayesian Online Learning

Repeatedly using Bayes’ theorem naturally leads to an online learning framework
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Bayesian Online Learning with Distribution Shift: the Problem

Bayesian online learning lacks efficiency in a changing environment.

Reason: as the posterior shrinks when evidence accumulates, Bayesian online
learning will get stuck with the first plausible solution.
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Bayesian Online Learning with Distribution Shift: Solution

Introduce an additional step to allow for partial forgetting of the previous information.

Examples

Broaden the variance at every time step Var(z)← β−1Var(z) where β ∈ (0,1) [Kulhavỳ and
Zarrop, 1993, Kurle et al., 2020].

Introduce additional noise [Welch et al., 1995] zt+1 = zt + εt .

However, the distribution shifts can vary at different rates, and the constant forgetting
rate may not apply for all scenarios.
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Model Assumption

To automatically determine when to adapt, we introduce a conditional prior for step t .

With a binary change variable st ∈ {0,1} and an inverse temperature 0 < β < 1

p(zt |st ; τt ) =

{
N (zt ;µt−1, σ

2
t−1), st = 0

N (zt ;µt−1, β
−1σ2

t−1), st = 1

where τt extracts the previous posterior’s mean µt−1(qt−1) and variance σt−1(qt−1).
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Model Assumption

Our model’s joint distribution factorizes as follows:

p(x1:T , z1:T , s1:T ) =
T∏

t=1

p(st )p(zt |st ; τt )p(xt |zt )

τt = F [p(zt−1|x1:t−1, s1:t−1)]. Throughout our work, we use a specific form

τt ≡ {µt−1,Σt−1} ≡ {Mean,Var}[zt−1|x1:t−1, s1:t−1]
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Infer the distribution shift at step t

Simple in a tractable model! Similar to a likelihood-ratio test!

The posterior of st is again a Bernoulli distribution p(st |s1:t−1,x1:t ) = Bern(st ; m)

m = σ

(
log

p(xt |st =1, s1:t−1,x1:t−1)

p(xt |st =0, s1:t−1,x1:t−1)
+ ξ0

)
,

ξ0 = log p(st = 1)− log p(st = 0) are the log-odds of the prior p(st ).

Same in an intractable model with variational inference!
The variational posterior of st is also a Bernoulli distribution Bern(st ; m)

m = σ

(
log

expL(q∗(zt )|st = 1, s1:t−1)

expL(q∗(zt )|st = 0, s1:t−1)︸ ︷︷ ︸
≈ p(xt |st = 0, s1:t−1, x1:t−1)

+ξ0

)
,
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Exponential Branching and Greedy Search

At time step t , the posterior branches into two configurations:{
st = 0 : p(zt |st = 0,x1:t , s1:t−1) weighted by p(st = 0|x1:t , s1:t−1)

st = 1 : p(zt |st = 1,x1:t , s1:t−1) weighted by p(st = 1|x1:t , s1:t−1)

Greedy Search
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Exponential branching prevents feasible computation.

Greedy Search
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Beam Search

Exact Beam Search for s1:t

p(s1:t |x1:t ) ∝ p(st |x1:t , s1:t−1)p(s1:t−1|x1:t−1)

where p(st |x1:t , s1:t−1) = Bern(st ; m) and

m = σ

(
log

p(xt |st =1, s1:t−1,x1:t−1)

p(xt |st =0, s1:t−1,x1:t−1)
+ ξ0

)

Variational Beam Search for s1:t

p(s1:t |x1:t ) ∝ q∗(st |s1:t−1)p(s1:t−1|x1:t−1)

where q∗(st |s1:t−1) = Bern(st ; m) and

m = σ

(
log

expL(q∗(zt )|st = 1, s1:t−1)

expL(q∗(zt )|st = 0, s1:t−1)︸ ︷︷ ︸
≈ p(xt |st = 0, s1:t−1, x1:t−1)

+ξ0

)
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Beam Search: Example

Beam search can correct the decisions in hindsight:
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Experiments (1)

Detect the changes in word meanings using dynamic word embeddings1.
an online version of word2vec2

1Bamler and Mandt, Dynamic Word Embeddings, ICML 2017
2Mikolov et al., Distributed Representations of Words and Phrases and their Compositionality, NIPS 2013
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Experiments (3)

p(zt |st ; τt ) =

{
N (zt ;µt−1, σ

2
t−1), st = 0

N (zt ;µt−1, β
−1σ2

t−1), st = 1

Different temperature parameter gives rise to qualitatively different detected changes:

small β

large β
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Experiments (4)

Adapt to covariate shifts in supervised learning:

0 20 40 60 80 100
Number of Tasks Completed

-40%

-20%

0%

20%

R
el

at
iv

e
E

rr
or

R
ed

uc
ti

on
to

V
C

L

0 20 40 60 80 100
Number of Tasks Completed

VGS
(proposed)

VBS-ensemble (K=3)
(proposed)

VBS-ensemble (K=6)
(proposed)

LP
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Experiments (5)

Table: Evaluation of Different Datasets

MODELS CIFAR-10 SVHN MALWARE SENSORDRIFT ELEC2 NBAPLAYER

(ACCURACY)↑ (MCAE 10−2)↓ (LOGLIKE 10−2)↑

VBS (K=6)∗ 69.2±0.9 89.6±0.5 11.61 10.53 7.28 29.49±3.12
VBS (K=3)∗ 68.9±0.9 89.1±0.5 11.65 10.71 7.28 29.22±2.63
VBS (K=1)∗ 68.2±0.8 88.9±0.5 11.65 10.86 7.27 29.25±2.59
BOCD (K=6)] 65.6±0.8 88.2±0.5 12.93 24.34 12.49 22.96±7.42
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Conclusion

We introduced a Bayesian inference algorithm for online learning in a non-stationary
environment with irregular shifts.

Our approach simultaneously detect and adapt to shifts.
We introduced two schemes – greedy search and beam search – that trade
expressiveness off against computation.
Experiments show that our approach achieves lower error in supervised learning and
compressive, interpretable latent structure in unsupervised learning.
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