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Motivation Examples

Learning in a sequential environment is important. Some practical examples include...

1920s 1950s 2000s year

The environments are changing, which requires the model to update in an online fashion.
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Bayesian Online Learning with Distribution Shift: the Problem

@ Bayesian online learning lacks efficiency in a changing environment.
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Bayesian Online Learning with Distribution Shift: the Problem

@ Bayesian online learning lacks efficiency in a changing environment.
@ Reason: as the posterior shrinks when evidence accumulates, Bayesian online

learning will get stuck with the first plausible solution.
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Bayesian Online Learning with Distribution Shift: Solution

@ Introduce an additional step to allow for partial forgetting of the previous information.
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Bayesian Online Learning with Distribution Shift: Solution

@ Introduce an additional step to allow for partial forgetting of the previous information.

e Broaden the variance at every time step Var(z) < 3~'Var(z) where 3 € (0, 1) [Kulhavy and
Zarrop, 1993, Kurle et al., 2020].

o Introduce additional noise [Welch et al., 1995] z;,1 = z; + ;.

@ However, the distribution shifts can vary at different rates, and the constant forgetting
rate may not apply for all scenarios.
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Model Assumption

@ To automatically determine when to adapt, we introduce a conditional prior for step t.
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@ To automatically determine when to adapt, we introduce a conditional prior for step t.

al) Posterior at t—1

p(ze—1|X1:0-1, S1:6-1)
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a2) Prior at t
Xt

p(zt|s: =0, 1)
P(Zr St = 1, Tr)

a3) Posterior at t

p(ze|x1.e, S1:0-1,5:=0)
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Model Assumption

@ To automatically determine when to adapt, we introduce a conditional prior for step t.
a2) Prior at t a3) Posterior at t

al) Posterior at t—1
Xt

p(z¢|x1:t, S1:6-1, 5: =0)

p(ze|x1:t, S1:0-1, 5. =1)

p(ze—1]x1:0-1, S1:6-1)

@ With a binary change variable s; € {0,1} and an inverse temperature 0 < 5 < 1

N (zs; 1,02 ), si=0
p(zi|st; 1) = (&t b 111)2 t
N(zt; pi-1, B Ut—1)a st =1

where 7; extracts the previous posterior's mean u;_1(q;_1) and variance o¢_1(q;_1)
NeurlPS 2021
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Model Assumption

@ Our model’s joint distribution factorizes as follows:

P(X1.7,21.7,81.7) = H
t—1
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Model Assumption

@ Our model’s joint distribution factorizes as follows:

;
p(x1.7, 217, 51.7) = | [ p(s)p(ztlse: 7)p(xi|2:)
t=1

@ 7t = F[p(Z:—1|X1.t—1, S1.t—1)]. Throughout our work, we use a specific form

Tt = {p—1, L¢—1} = {Mean, Var}[z;_1[Xq.t_1, S1:t1]
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Infer the distribution shift at step ¢

@ Simple in a tractable model! Similar to a likelihood-ratio test!
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@ Simple in a tractable model! Similar to a likelihood-ratio test!
@ The posterior of s; is again a Bernoulli distribution p(st|s1.t—1, X1.t) = Bern(s;; m)

Xt|St=1,S1:t—1, Xy.t—1
(xt| )+£0>’

p
m =o | log
< p(Xt|St=0,S1.t—1, X1:t—1)

& = logp(st = 1) — log p(s; = 0) are the log-odds of the prior p(st).
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Infer the distribution shift at step ¢

@ Simple in a tractable model! Similar to a likelihood-ratio test!
@ The posterior of s; is again a Bernoulli distribution p(st|s1.t—1, X1.t) = Bern(s;; m)

Xt|St=1,S1:t—1, Xy.t—1
(xt| )+€0>’

p
m =o | log
< p(Xt|St=0,S1.t—1, X1:t—1)

& = logp(st = 1) — log p(s; = 0) are the log-odds of the prior p(st).

@ Same in an intractable model with variational inference!
@ The variational posterior of s; is also a Bernoulli distribution Bern(s;; m)

exp L(q*(2t)|st = 1,81.t-1) +§0)
exp L(q*(21)|st = 0, 51.4_1) ’

~ p(xt|st = 0, S1:t—1, X1:t—1)

m= O’('Og
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Exponential Branching and Greedy Search

@ At time step t, the posterior branches into two configurations:

St=0: p(zist = 0, X1, S1.1—1) weighted by p(s; = 0[Xy.¢, S1:+-1)
st=1: p(zist =1, X1.t, S1.1—1) weighted by p(s; = 1|Xy.¢, S1:4-1)
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Exponential Branching and Greedy Search

@ Attime step t, the posterior branches into two configurations:

St=0: P(Zt|3t =0, Xq.¢, 31:2‘71) Welghted by p(st = 0|X1:ta S‘I:t*‘])
St = 1: p(zt’St = 1,X1;t, S1:t—1) Welghted by ,O(St =1 |X1:t7 S1:1‘—1)

53:0

53:1

S3=0

S3 =

S = /53=

S = /53_1

51:0 Sy = S3 =
50:0451:1 ‘ 52:14532

time t

@ Exponential branching prevents feasible computation.
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Exponential Branching and Greedy Search

@ At time step t, the posterior branches into two configurations:

St=0: p(zist = 0, X1.t, S1.1—1) weighted by p(st = 0|Xy.4, S1:t-1)
Sst=1: p(zist =1, X1.t, S1.+—1) weighted by p(st = 1|X1.¢, S1:t-1)

Greedy Search

=0V —
ss=0— s$5=0— 53 =0 {54:1—>
51:1% 55:1_)...
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Beam Search
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Beam Search

@ Exact Beam Search for sq¢
P(S1:t|X1:t) o< P(St| X1, S1:¢—1)P(S1:t—1]X1:t—1)

where p(s¢|Xi1.t, $1:t—1) = Bern(s;; m) and

P(Xt|St=1,81.t—1, X1:t—1)
m=o/|log +&o
( P(Xt|5t=0, S1.—1, X1:¢—1)
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Beam Search

@ Exact Beam Search for sq¢ @ Variational Beam Search for sy
P(S1:t|X1:t) o< P(St| X1, S1:¢—1)P(S1:t—1]X1:t—1) P(S1:t|X1:t) o< G*(St|S1:t—1)P(S1:t—1/X1:t-1)
where p(s¢|Xi1.t, $1:t—1) = Bern(s;; m) and where g*(s¢|$1.t—1) = Bern(s;; m) and
p(Xt|St=1,81.t_1,X1.t_1) > ( exp L(q*(z)|8t = 1, S1:4-1) )
m=oallo + m= lo +
( P(Xt|5t=0, S1.—1, X1:¢—1) %0 7\ %8 exp L£(q*(2t)|st = 0, S1:4—1) &

~ p(xt|st =0, S1.4—1, X1:t—1)
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Beam Search: Example

Beam search can correct the decisions in hindsight:

Zt
X when two hypotheses
0 - XX " )S(WItCh the order
X
i B X
—2 4— higher prob!
— lower prob. Xy X
X noisy d X X
o g:)oijynd attrauth X X X X
1 I I I 1 1 .
0 5 10 15 20 o5 time step ¢
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Experiments (1)

Detect the changes in word meanings using dynamic word embeddings’.
@ an online version of word2vec?

'Bamler and Mandt, Dynamic Word Embeddings, ICML 2017
2Mikolov et al., Distributed Representations of Words and Phrases and their Compositionality, NIPS 2013
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Experiments (3)

N(zt: pi-1,02 ), st=0
-/\/’(Zt;lit—hﬁqgtzq), st =1

Different temperature parameter gives rise to qualitatively different detected changes:

p(z:|st; ) = {

Aodong Li (Department of Computer Science, UCI) Adaptive Bayesian Online Learning NeurlPS 2021 13/17



Experiments (3)

N(zi; pr-1,02 ), st=0
N(zi; i1, 57102), s =1

Different temperature parameter gives rise to qualitatively different detected changes:

p(zt|st; ) =

|
\
o Player Trajectory

Detected Changepoints (3 = 0.8)
() Detected Changepoints (3 = 0.6)
Y Detected Changepoints (5 = 0.3)




Experiments (3)

N(zi; pr-1,02 ), st=0
N(zi; i1, 57102), s =1

Different temperature parameter gives rise to qualitatively different detected changes:

p(zi|st; mt) =

|
\
o Player Trajectory

Detected Changepoints (3 = 0.
Detected Changepoints (3 = 0.




Experiments (3)

N(zi; pr-1,02 ), st=0
N(zi; i1, 57102), s =1

Different temperature parameter gives rise to qualitatively different detected changes:

p(zi|st; mt) =

|
\
o Player Trajectory

Detected Changepoints (3 = 0.
Detected Changepoints (3 = 0.




Experiments (3)

N(zi; pr-1,02 ), st=0
N(zi; i1, 57102), s =1

Different temperature parameter gives rise to qualitatively different detected changes:

p(zi|st; mt) =

|
\
o Player Trajectory

Detected Changepoints (3 = 0.
() Detected Changepoints (3 = 0.
Detected Changepoints (3 = 0.

Aodong Li (Department of Computer Science, UCI) Adaptive Bayesian Online Learning NeurlPS 2021 13/17



Experiments (4)

Adapt to covariate shifts in supervised learning:

MJ\J\A/\MA h A

[N)
=]
B

0%

-20% A

Relative Error Reduction to VCL

VGS VBS-ensemble (K=3) VBS-ensemble (
""" (proposed) 77 (proposed) T (proposed) [Smola et al.,, 2003] Indegandere| Task '\1
-40% . . . . YT E— T LT W I 7
0 20 40 60 80 1000 2() 40 60 100

Number of Tasks Completed Number of Tasks Completed
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Experiments (5)

Table: Evaluation of Different Datasets

MODELS CIFAR-10 SVHN MALWARE SENSORDRIFT ELEC2 NBAPLAYER
(ACCURACY)? (MCAE 1073)| (LOGLIKE 1072)1
VBS (K=6)* 69.2+0.9 89.6+0.5 11.61 10.53 7.28 29.49+4+3.12
VBS (K=3)* 68.9+0.9 89.1+0.5 11.65 10.71 7.28 29.22+2.63
VBS (K=1)* 68.2+0.8 88.9+0.5 11.65 10.86 7.27 29.25+2.59
BOCD (K=6)! 65.6+0.8 88.24+0.5 12.93 24.34 12.49 22.96+7.42
BOCD (K=3)! 67.3+0.8 88.840.5 12.74 24.31 12.49 20.93+7.83
BFY 69.8+0.8 89.9+0.5 11.71 11.40 13.37 24.17+2.29
VCLT 66.74+0.8 88.7+0.5 13.27 24.90 16.59 3.48+25.53
LP* 62.6+1.0 82.8+0.9 13.27 24.90 16.59 3.48+25.53
IBS 63.7+0.5 85.5+0.7 16.6 27.71 12.48 -44.87+16.88
IBS (BAYES) 64.5+0.3 87.8+0.1 16.6 27.71 12.48 -44.87+16.88

* PROPOSED, ? [ADAMS AND MacKay, 2007], ¥ [KURLE ET AL., 2020]

T [NGUYEN ET AL., 2018], ¥ [SMOLA ET AL., 2003], ¥ INDEPENDENT BATGH
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Conclusion

@ We introduced a Bayesian inference algorithm for online learning in a non-stationary
environment with irregular shifts.
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Conclusion

@ We introduced a Bayesian inference algorithm for online learning in a non-stationary
environment with irregular shifts.
@ Our approach simultaneously detect and adapt to shifts.

@ We introduced two schemes — greedy search and beam search — that trade
expressiveness off against computation.

@ Experiments show that our approach achieves lower error in supervised learning and
compressive, interpretable latent structure in unsupervised learning.
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