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Single-Objective vs. Multiple-Objective RL
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Regret Analysis

[Upper Bound] For any {1, ..., wX} and with high o AT
(Bernstein ver.) satisfies:

regret(K) < @(

[Lower Bound] For every MORL algorithm, there is a distribution of MOMDPs
and a (necessarily adversarial) sequence { 1, e, WR } such that:

“[regret(K)] > Q(

MORL is statistically harder than single- olet/ve



Preference-Free Exploration rHow/arge ks

sufficient / necessary?

adversary chooses agent computes
preference w PAC-policy &

unsupervised B | |
exploration d = Task-Agnostic Exploration

[X. Zhou, Y. Ma, A. Singla, NeurlPS 2020]

— SA Reward-Free Exploration

[C. Jin, A. Krishnamurthy, M. Simchowitz, T. Yu, ICML 2020 ]




& Sample Complexity

Set preference/reward to zero, and run MO-UCBVI (Hoefiding ver.)

Typical UCBVI with input preference/reward

[Upper Bound] For our algorithm to be (6 0)- PAC, it suﬁlces to have

K = 6(min{d,S} - H3SA - log / €%

| nearly tight except for H J}
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[Lower Bound] There is a distribution of MOMDPs such that for every
(e,0 = 0.1)-PAC algorithm, there is a (necessarily adversarial) v such that:

[K] > Q( min{d, S} - H*SA / €7)

min{d, S} vs. S: exploration is easier when rewards are structured



Numerical Simulations
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more objectives, larger regret sublinear regret for MO-UCBVI



Where the min{d, S} Stems from?
Lemma [optimistic estimation]:With high probability,

Q;’:(x, a,w) < /Q\h(x, a; w) for every h, x, a, w and in every episode.
IProof]: Use induction. The key is to show:
for every h, x, a, w and in every episode,

)| < b(x,a) = {d,SY- H*-log(-) / #(x, a)
covering number for]  covering number for| | two union bounds
value function set | preference set | | n
Lg < (1 /€)S | L — (1/¢)? J/ Hoeffding’s ineq,.



Take-Home

 RL with multiple objectives and
e upper + lower bounds
. multi-objective >> single-objective
. structured rewards << arbitrary rewards

* (Generalize existing settings:
« d = 1: single-objective RL, task-agnostic exploration

e d = SA: reward-free exploration




