Accommodating Picky Customers # Regret Bound and Exploration Complexity for Multi-Objective RL Jingfeng Wu, Vladimir Braverman, Lin Yang # Single-Objective vs. Multiple-Objective RL TILL SOLVE Faaaaster! Smoooother~ Reward: $0.6 \times Fast$ $0.4 \times Smooth$ Multiple Objectives? Unknown Preferences? #### Problem Setup State S Action A Horizon H Transition P $$V_h^{\pi}(x; \mathbf{w}) := Q_h^{\pi}(x, \pi_h(x); \mathbf{w})$$ $$Q_h^{\pi}(x, a; \mathbf{w}) := \mathbb{E}\left\langle \mathbf{w}, \mathbf{r}_h(x_h, a_h) \right\rangle + \dots + \left\langle \mathbf{w}, \mathbf{r}_H(x_H, a_H) \right\rangle$$ $$Scalarization$$ Vector Reward $\mathbf{r}: [H] \times S \times A \rightarrow [0,1]^d$ Preferences $\{w \in [0,1]^d : ||w||_1 = 1\}$ $$V_1^*(x_1; \mathbf{w}) = \max_{\pi} V_1^{\pi}(x_1; \mathbf{w})$$ $$\pi^* \text{ depends}$$ $$\text{on } \mathbf{w}$$ #### Online MORL regret(K) := $\sum_{k=1}^{K} V_1^*(x_1; \mathbf{w}^k) - V_1^{\pi^k}(x_1; \mathbf{w}^k)$ adversary chooses preference w $\begin{array}{c} \textit{agent} \; \textit{chooses} \\ \textit{policy} \; \pi \end{array}$ $\pi^{*, k}$ varies according to w^k $\begin{array}{c} \textit{agent} \; \text{observes} \\ \text{trajectory} \; \{(x_h, a_h, x_{h+1})\}_{h=1}^H, \\ \text{collects reward} \; V_1^\pi(x_1; \textit{w}) \end{array}$ MO-UCBVI ---- Best stationary policy linear regret 100 1000 2000 10 Single-obj. / adv. RL methods fail to apply # Multi-Objective UCB Value Iteration #### Regret Analysis matching single-obj. RL when d=1 [Upper Bound] For any $\{w^1, ..., w^K\}$ and with high prob., MO-UCBVI (Bernstein ver.) satisfies: $$regret(K) \le \mathcal{O}\left(\sqrt{\min\{d,S\}} \cdot H^2SAK \cdot \log\right)$$ [Lower Bound] For every MORL algorithm, there is a distribution of MOMDPs and a (necessarily adversarial) sequence $\{w^1, ..., w^K\}$ such that: $$\mathbb{E}[\text{regret}(K)] \ge \Omega\left(\sqrt{\min\{d,S\} \cdot H^2SAK}\right)$$ tight up to log factors MORL is statistically harder than single-objective RL #### Preference-Free Exploration How large *K* is sufficient / necessary? unsupervised exploration d = SA Reward-Free Exploration [C. Jin, A. Krishnamurthy, M. Simchowitz, T. Yu, ICML 2020] # Algorithm & Sample Complexity [Exploration] Set preference/reward to zero, and run MO-UCBVI (Hoeffding ver.) [Planning] Typical UCBVI with input preference/reward [Upper Bound] For our algorithm to be (ϵ, δ) -PAC, it suffices to have $$K = \mathcal{O}(\min\{d, S\} \cdot H^3SA \cdot \log / \epsilon^2)$$ nearly tight except for H [Lower Bound] There is a distribution of MOMDPs such that for every $(\epsilon, \delta=0.1)$ -PAC algorithm, there is a (necessarily adversarial) $\it w$ such that: $$\mathbb{E}[K] \ge \Omega\left(\min\{d, S\} \cdot H^2SA / \epsilon^2\right)$$ $\min\{d,S\}$ vs. S: exploration is easier when rewards are structured #### **Numerical Simulations** #### **Effect of Number of Objectives** Performance of MO-UCBVI in simulated MOMDPs with different number of objectives $d \in \{1, 5, 15, 20, 30\}$ #### Single-Objective RL Method Fail to Apply MO-UCBVI vs. Q-Learning in a simulated MOMDP with $d=15\,$ more objectives, larger regret sublinear regret for MO-UCBVI # Where the $min\{d, S\}$ Stems from? Lemma [optimistic estimation]: With high probability, $$Q_h^*(x, a; w) \le \widehat{Q}_h(x, a; w)$$ for every h, x, a, w and in every episode. [Proof]: Use induction. The key is to show: for every h, x, a, w and in every episode, $$|\widehat{\mathbb{P}} - \mathbb{P}[V_h^*(x, a; w)]| \lesssim b(x, a) \approx \sqrt{\min\{d, S\}} \cdot H^2 \cdot \log(\cdot) / \#(x, a)$$ covering number for value function set $\approx (1/\epsilon)^S$ covering number for preference set $= (1/\epsilon)^d$ two union bounds + Hoeffding's ineq. #### Take-Home - RL with multiple objectives and adversarial preferences - upper + lower bounds - [Online Setting] multi-objective >> single-objective - [Unsupervised Setting] structured rewards << arbitrary rewards - Generalize existing settings: - d = 1: single-objective RL, task-agnostic exploration - d = SA: reward-free exploration get the paper