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Single-Objective vs. Multiple-Objective RL
Action

Reward:

Fast 

Smooth
0.6 ×

0.4 ×

State

Faaaaster!

Multiple Objectives?  
Unknown Preferences?

Smoooother~



Problem Setup
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r : [H] × S × A → [0,1]d

{w ∈ [0,1]d : ∥w∥1 = 1}

Qπ
h (x, a; w) := 𝔼⟨w, rh(xh, ah)⟩ + ⋯ + ⟨w, rH(xH, aH)⟩

Vπ
h (x; w) := Qπ

h (x, πh(x); w)

Scalarization

V*1 (x1; w) = max
π

Vπ
1(x1; w)

 depends  
on 

π*
w



Online MORL 𝚛𝚎𝚐𝚛𝚎𝚝(K) :=
K

∑
k=1

V*1 (x1; wk) − Vπk

1 (x1; wk)

adversary chooses 

preference  w

agent chooses 

policy π

agent observes 

trajectory , 


collects reward 
{(xh, ah, xh+1)}H

h=1
Vπ

1(x1; w)

 varies 
according  

to 

π*, k

wk

Single-obj. / adv. RL methods fail to apply

linear  
regret



Multi-Objective UCB Value Iteration

̂Q h(x, a; w) ← ⟨w, rh(x, a)⟩ + ̂ℙ ̂V h+1(x, a; w) + b(x, a)

adversary chooses 

preference  w

agent chooses greedy policy 
 according to  π ̂Q

agent observes 

trajectory , 


collects reward 
{(xh, ah, xh+1)}H

h=1
Vπ

1(x1; w)
#(x, a, y)
#(x, a)

≂
min{d, S}H2 log

#(x, a)

UCB 

Bonus

can be improved to Bernstein version

Lemma [optimistic estimation]: with high prob.

 for every Q*h (x, a; w) ≤ ̂Q h(x, a; w) h, x, a, w



Regret Analysis
[Upper Bound] For any  and with high prob., MO-UCBVI 
(Bernstein ver.) satisfies:


  


[Lower Bound] For every MORL algorithm, there is a distribution of MOMDPs 
and a (necessarily adversarial) sequence  such that:


  

{w1, …, wK}

𝚛𝚎𝚐𝚛𝚎𝚝(K) ≤ 𝒪( min{d, S} ⋅ H2SAK ⋅ log)

{w1, …, wK}

𝔼[𝚛𝚎𝚐𝚛𝚎𝚝(K)] ≥ Ω( min{d, S} ⋅ H2SAK)

matching single-obj. RL when d = 1

tight up to log factors

MORL is statistically harder than single-objective RL



Preference-Free Exploration

adversary chooses 

preference  w

agent computes 

PAC-policy π

agent collects  trajectoriesK ℙ{∀w, V*1 (x1; w) − Vπ
1(x1; w) ≤ ϵ} ≥ 1 − δ

unsupervised  
exploration

w ∈ ℝd

d = 1

d = SA

Task-Agnostic Exploration 
[X. Zhou, Y. Ma, A. Singla, NeurIPS 2020]

Reward-Free Exploration 
[C. Jin, A. Krishnamurthy, M. Simchowitz, T. Yu, ICML 2020 ]

How large  is  
sufficient / necessary?

K



Algorithm & Sample Complexity

[Upper Bound] For our algorithm to be -PAC, it suffices to have

  


[Lower Bound] There is a distribution of MOMDPs such that for every 
-PAC algorithm, there is a (necessarily adversarial)  such that:


  

(ϵ, δ)
K = 𝒪( min{d, S} ⋅ H3SA ⋅ log / ϵ2)

(ϵ, δ = 0.1) w
𝔼[K] ≥ Ω( min{d, S} ⋅ H2SA / ϵ2)

[Exploration] Set preference/reward to zero, and run MO-UCBVI (Hoeffding ver.)


[Planning] Typical UCBVI with input preference/reward

nearly tight except for H

 vs. : exploration is easier when rewards are structuredmin{d, S} S



MO-UCBVI vs. Q-Learning in a simulated MOMDP with 
d = 15

Single-Objective RL Method Fail to Apply

Performance of MO-UCBVI in simulated MOMDPs with 
different number of objectives d ∈ {1, 5, 15, 20, 30}

Effect of Number of Objectives

Numerical Simulations

more objectives, larger regret sublinear regret for MO-UCBVI



Where the  Stems from?min{d, S}
Lemma [optimistic estimation]:With high probability,


 for every  and in every episode.Q*h (x, a; w) ≤ ̂Q h(x, a; w) h, x, a, w
[Proof]: Use induction. The key is to show: 

for every  and in every episode, 


 


h, x, a, w

| ( ̂ℙ − ℙ)V*h (x, a; w) | ≲ b(x, a) ≂ min{d, S} ⋅ H2 ⋅ log( ⋅ ) / #(x, a)

covering number for

preference set


≂ (1/ϵ)d

covering number for

value function set


 ≂ (1/ϵ)S

two union bounds

+


Hoeffding’s ineq.



Take-Home
• RL with multiple objectives and adversarial preferences


• upper + lower bounds


• [Online Setting] multi-objective >> single-objective


• [Unsupervised Setting] structured rewards << arbitrary rewards


• Generalize existing settings:


• : single-objective RL, task-agnostic exploration 


• : reward-free exploration

d = 1

d = SA

get the paper 


