Pareto-Optimal Learning-Augmented Algorithms for Online Conversion Problems

Bo Sun, Russell Lee, Mohammad Hajiesmaili, Adam Wierman, Danny H.K. Tsang

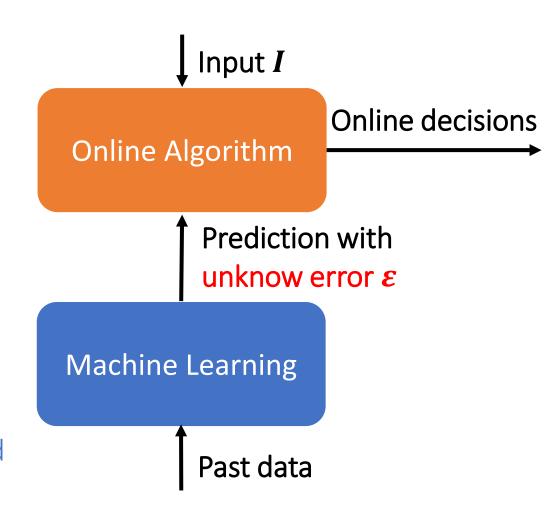
Learning-Augmented Online Algorithms

- Online algorithm makes online decisions when inputs are revealed piece-by-piece and future input pieces are unknown
 - competitive ratio

$$CR = \max_{I} \underbrace{OPT(I)}_{OPT(I)}$$
 online algorithm

- Learning-augmented algorithm leverages predictions about the future
 - competitive ratio as a function of arepsilon

$$CR(\varepsilon) = \max_{I} \underbrace{\frac{OPT(I)}{ALG(I, \varepsilon)}}_{l}$$
 Learning-augmented algorithm when prediction error is ε



Two Important Metrics: Consistency and Robustness

Competitive Caching with Machine Learned Advice ICML 2018 & Journal of the ACM 2021

Improving Online Algorithms via ML Predictions

NeurlPS 2018

The Primal-Dual method for Learning Augmented
Algorithms

NeurlPS 2020

Optimal Robustness-Consistency Trade-offs for Learning-Augmented Online Algorithms

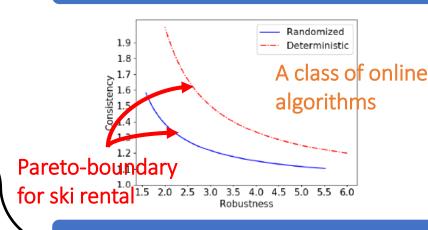
NeurIPS 2020

Alexander Wei UC Berkeley awei@berkeley.edu Fred Zhang UC Berkeley z0@berkeley.edu

Concepts

- $CR(0) \le \eta$ (consistency)
- $\max_{\varepsilon} CR(\varepsilon) \leq \gamma$ (robustness)

Trade-offs



Pareto-optimality

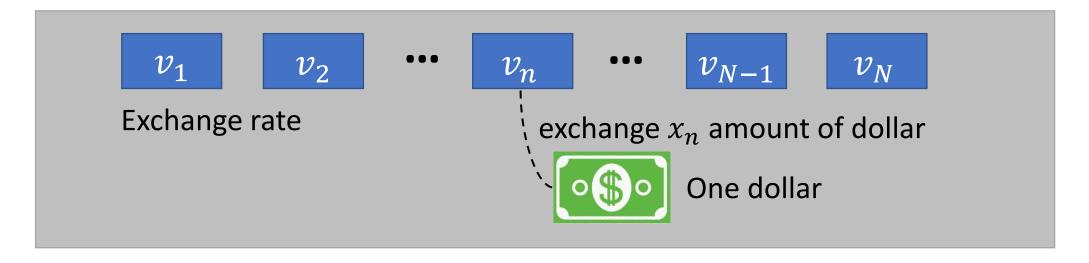
 for a given robustness, no online algorithms can achieve a better consistency Can we design learning-augmented algorithms with bounded robustness and consistency for other online problems? Yes, secretary and online matching [Antoniadis2020, NeurIPS], metrical task systems [Antoniadis2020, ICML], etc.

Can we design Pareto-optimal learning-augmented algorithms for other online problems?

Only known for ski rental problem

Our contribution: we design Pareto-optimal algorithms for online conversion problems

Online Conversion Problem



- Exchange one asset (e.g., one dollar) to another asset over time varying exchange rates 1-max-search: $\mathcal{X}_n = \{0,1\}$ one-way trading: $\mathcal{X}_n = [0,1]$
- For $n=1,\ldots,N$
 - lacktriangle observe an exchange rate (or price) v_n
 - decide the amount of dollar to trade, $x_n \in \mathcal{X}_n$, and obtain return $x_n v_n$
- Goal: maximize the total return $\sum_{n \in [N]} x_n v_n$

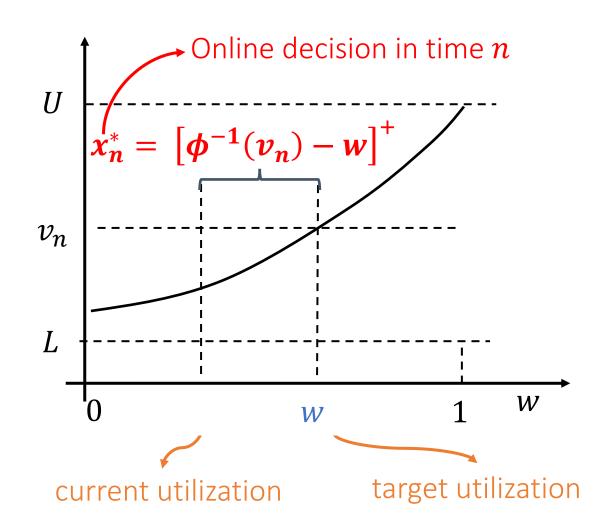
Unified Online Threshold-Based Algorithm (OTA)

Initialization

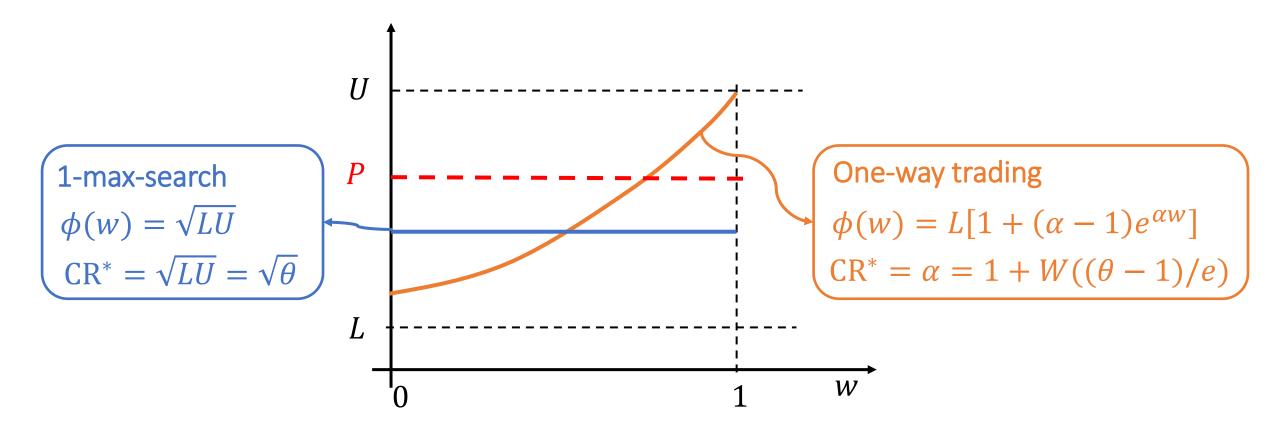
- threshold $\phi(w)$: $[0,1] \rightarrow [L,U]$ utilization (cumulative traded dollar)
- For each n do
 - lacktriangle observe current utilization w and exchange rate v_n
 - determine x_n^* by solving

$$\max_{x_n \in \mathcal{X}_n} v_n x_n - \int_{w^{(n-1)}}^{w^{(n-1)} + x_n} \phi(u) du$$

■ update $w \leftarrow w + x_n^*$



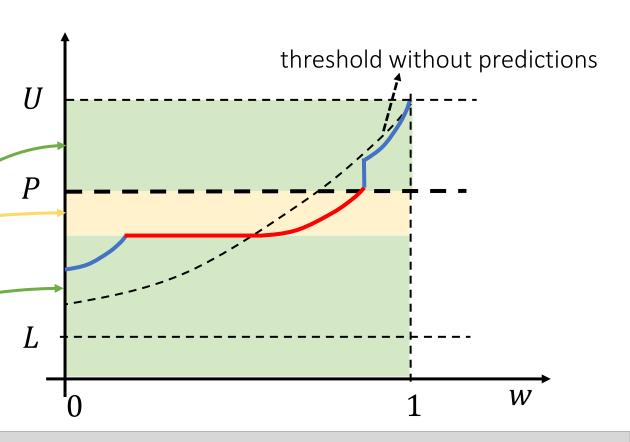
Design of Threshold Function for OTA



Given a prediction of the maximum exchange rate *P*, how to incorporate it into the threshold function to guarantee robustness and consistency?

Threshold Function for Learning-Augmented OTA

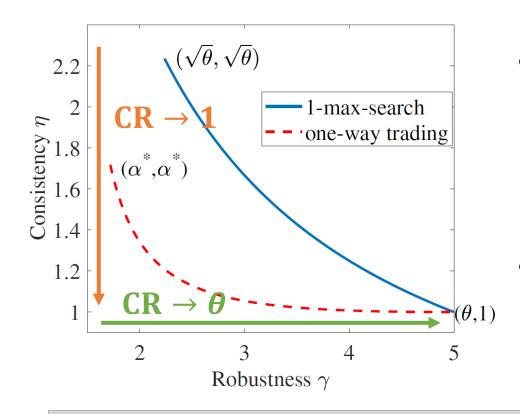
- price region near prediction P ensure consistency
- price region away from predictionP, ensure robustness



Theorem (sufficient conditions):

If each segment satisfies a set of <u>differential equations</u>, learning-augmented OTA is with consistency and robustness upper bounds.

Pareto-Optimal Learning-Augmented OTA



• As consistency improves $CR \rightarrow 1$ (best possible ratio), robustness degrades $CR \rightarrow \theta$ (worst possible ratio)

 Pareto boundary of one-way trading dominates that of 1-max-search

Theorem (Pareto-Optimality):

Learning-augmented OTA is <u>Pareto-optimal</u>, i.e., for a given robustness, no online algorithms can achieve a better consistency

Take-Away Message

We have designed Pareto-optimal learning-augmented threshold-based algorithms for online conversion problems