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Integration of machine learning and logical reasoning  msssugtonces

Machine ) Logical
[ Learning J [Reasoning]

Data-driven Knowledge-driven

1. End-to-end models

* Approximate logical calculus with differentiable functions
* Demand a large number of labeled data

2. Hybrid modeling of dual systems
* Abductive Learning (ABL)
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Abductive Learning -- Inference e o
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Abductive Learning -- Learning oy
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* Leverage full-featured logical reasoning to reduce the requirement for labeled data
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* Abduction (Abductive reasoning): a basic form of logical inference that seeks
the most likely explanation for observations based on background knowledge

* A non-deterministic process that may have multiple answers
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Similarity-based Consistency Measure
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Similarity-based Consistency Measure esming nd Mg o D

* Idea:
« Samples in the same category are similar in feature space

* Samples of different classes are dissimilar
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Consistency Optimization Problem g s o

 Given the input data x, final output y, candidate labels set A

 Problem formalization

max SimilarityScore(x, Z)
z€

* Consistency

g 1 .
SimilarityScore (2, 2) = —— Z (InterclassDis(x;, Z) — IntraclassDis(z;, Z))
Kl et

. )

InterclassDis(z;, Z Z Dis(z;, ( the set of 1r}stances whos?
xj D, & _labels are different from x;’s
R

IntraclassDis(z;, 2 Z Dis(z;, z;). ( the set of instances whose
;€8 2 . labels are the same as x;'s |
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S imilarity Learning And Mining from DatA

i 1 1 1
Final max —— Z Z Dis(x;,25) — Z Dis(x;,25) | .
o] 2 \TDiz ], & [Siv |

problem =4 x5 €54 2

* The higher the similarity, the smaller the distance
Dis(x;, ;) = Distance(o(x;), ¢(x4))
* ¢ is the feature map function: e.g., neural network for images or
normalization function for tabular data
* We can obtain ¢ by unsupervised learning, or use perception classifier’s

embedding layer
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Abductive Learning with Similarity (ABLSim)
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Borrow more samples e e

* It could be challenging to calculate the intra-class distance due to limited instances

* We borrow some more samples to conduct the abductive reasoning

P e Z =N <
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Borrow more samples e e

* The abduction problem
max Score(X, Z),
Z

st. X = (WM, 22 .. 2,
Z e A x A x ..o x Al
AW ={z| KBUz = y*).
« Combinatorial optimization problem where the search space of grows

exponentially with m

« ABLSim uses beam search to solve this optimization problem greedily
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Beam Search (Example) g oo oo
 Beam width b = 2
First equation Second equation Third equation
F L FTR=R . =
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Meanings of images Revised labels candidates and their scores
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Beam Search (Algorithm) e o g

Algorithm 1 ABLSim Learning

Input: Unlabeled data X = ('Y 2@ ... 2{™); Final output y = (y‘V, 42 ... 4m);
Current model f: Knowledge base A’ B; Beam width b
Output: Model f
s fort =1to’l"do
A+ [] # the candidate labels
for : = 1tom do
2k« f(z*))  # generate pseudo-labels
AR} < Abduce(K B, z*) y*))  # abduce all consistent revised pseudo-labels
A + A x AR # Cartesian product
x <« X|[1: k]
score + [| # the score of cach candidate labels
for z € A do
score.append(Score(x, Z)) # get the score of candidate labels according to Eq.
end for
A « TopN(A, score, b) # select the top-k score candidate labels
end for
Z « TopN(A. score, 1) # select the best candidate labels
[« Update(f, X, Z) # update model using abduced labels Z
end for

Wiy
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* Could be accelerated by GPU and parallel computations
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Combing Different Consistency Measures eamingAnd Wi om0

e The confidence score

1
ConfidenceScore(x, Z) = ﬁ H Confidence(x;, Z;)
x
r;ex

* The final score for ABLSim’s consistency measure

Score(x, Z) = @ - SimilarityScore(x, Z) + (1 — #) - ConfidenceScore(x, Z)

~.

Weighting coefficient
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Experiments
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 MNIST (CIFAR-10) Addition
* Handwritten Formula Recognition (HWF)

Method Addition  Addition (CIFAR) HWF HWF (CIFAR)
DeepProbLog 96.51+0.5 21.6+1.7 32.240.6 15.2£2.6
Ace /% NGS-dft 39.9454.1 38.7£35.1 99.6L0.2 23.8=6.3
‘ NGS-opt 98.51+0.3 88.7£0.8 99.6+0.2 66.0+14.5
ABLSim (ours)  98.8+0.1 88.9+0.5 99.9+0.1 88.4+0.7
DeepProbLog 39643 time out time out time out
Time / s NGS-dft time out time out 299436 time out
o NGS-opt 464 6954L£558 2407 time out
ABLSim (ours) 42+5 6066+79 130+4 72634122

« ABLSim solves all tasks efficiently and achieves a higher accuracy than SOTA models
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Re SUltS Learning And Mining from DatA

* CIFAR-10 Decimal Equation Decipherment
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Figure 3: Learning curves (a & b) and the t-SNE visualization of the learned embeddings (¢ & d).
* Converges much faster and achieves higher accuracy than other methods

* The embeddings of classes are improved after the neural net is updated with
the abduced labels
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Re SUltS Learning And Mining from DatA

* Theft Judicial Sentencing

Table 3: Micro-F1-score of the model, and
MAE of the predicted sentence. The label
rates are denoted as suffixes.

KB Method Fl1 MAE

N/A PL-10 0.814 0.862
N/A Tri-10 0.812 0.840
Full SS-ABL-10 0.862 0.824

Part SS-ABL-10 0.833 (0.835
Part ABLSim-10 0.851 0.828

N/A PL-50 0.858 0.832
N/A Tri-50 0.861 0.810
Full SS-ABL-50 0.865 0.788

Part SS-ABL-50 0.862 0.803
Part ABLSim-50 0.866 (0.783

« ABLSim achieves the highest or comparable performance with weaker KB
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Conclusion S e B

* Propose a novel consistency measure for abduction-based neuro-symbolic
learning and the ABLSim method

* ABLSim significantly outperforms the state-of-the-art neuro-symbolic
learning approaches in terms of speed and performance

 Future work: discover new class and new knowledge to automatically
extend the knowledge base
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