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Introduction

» Multi-agent reinforcement learning (MARL) is applied to solve challenging multi-
agent games

// /]

itionally, hiders lear to coordinate who will block which door and who will

Hide-and-seek
» learning intelligent multi-agent policies in general still remains a great RL challenge:

OpenAl Five Dota 2

v Massive compute » Sample-efficient

v Require shaped rewards > Sparse-reward

v Only handle a limit number of agents > A large number of agents




Introduction
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> We focus on goal-conditioned cooperative problems

v" Sparse reward problems
v Massive agents
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Introduction

» Solution: Curriculum Learning
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Variational Automatic Curriculum Learning
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» Preliminary —

n: e.g. number of
agents

1. Define a multi-agent Mdrkov decision process (MDP) :

M(n, ¢) =<4 n)o,|S,A,0,0,P,R,s3} gp ¥ >

o
o®

3. The main 1dea of curriculum learning is to Wﬂst(ﬁu(ﬁtez) tasks ler q(n, ¢)

¢: positions of Easy to hard function gﬁnﬂ@tﬁv task S(%: 1nitial states
agents and
landmarks q(n,P) M(n, ¢), 0/1 M(n, ¢)

@ efficiently

Few to massive -
maximize

J(6) :

entire task space
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> Variational In ference 1— Variational inference 1— 1dentical transformation
£=EpplV ) = By LDV (6,101 = BV (6,10 + )~ V(@)
p(P] )
I_> 2 Ep-qlV(p, 1]+ Egpge) |[V(g, ) logq((p) < > logx
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Maximize

£ with 7 Ly:policy update  Lo:curriculum update Maximize £, with ()
\ )
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1terative

*We prove that if we can perfectly optimize the RL procedure for £, under q(¢), L,
encourages q(¢) to converge to p(¢)




Variational Automatic Curriculum Learning

L1:Egp~q(e)

Lz:Ep~q(e)

V (¢, )], standard RL procedure
p($)

'V (¢, m)log( )] How to represent q(¢) ?

q($)

Neural network ? | > > Stein variational inference

Use particles to approximate q(¢)

expensive .
Q : the particle set




Variational Automatic Curriculum Learning

p(¢)
q(p)

» Stein variational gradient descent

Ly:Egqg[V (¢, m)log( )]  How to update q(¢) ?

¢' = ¢ +ef(9)

We prove that f*(-) = Epreq[V(@', ) - Vyrk(d',)]
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Respelling force Scale Kernel function




Task Expansion

I
» Implementation

V(¢,m)

!

v" Value Quantization

Efficient QSOl — {¢|V(¢! T[) > O-max}

V(p,m) —>
Qact = {Plomin S V(P, ) < Oy}

v Sampling-Based Particle Exploration
f @)= E¢’EQ[V(¢,r7T) ' V¢’k(¢’»')]

l Simplify
f*() X IE(P’EQsol [V¢1k(¢’,-)] uniform noise /* f*(-)
Pexp < Pseea + ef* (Pseeq) + Unif (=8, 8) Explore novel tasks in the boundary

region between Qg and Qg
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Entity Progression

T
Ly Egqen[V (9, n)log(zgzi)] How to represent q(¢) N
How to update q(¢) z
How to handle discrete variables ? - b
v Continuous Relaxation for Discrete Parameter "

* p(n;z) = Categorical (z4, z,, ..., Zy) denotes the distribution which generates n agents with probability z,

* start with z, = 1 and gradually increase z;, for larger k

Zp
. >
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Multi-agent Particle-World Environments

Simple-Ball Push-Ball

12



Multi-agent Particle-World Environments

Baselines :

(1) multi-agent PPO with uniform task sampling (Uniform)
(2) naive population curriculum (PC-Unif)

(3) reverse curriculum generation (RCG)

(4) automatic goal generation (GoalGAN)

(5) adversarially motivated intrinsic goals (AMIGo)
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Multi-agent Particle-World Environments

v' Main results

Simple-Spread (n=8) Push-Ball (n=4)
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Multi-agent Particle-World Environments

v The results of massive agents

Table 1: The best coverage rate ever
reported on Simple-Spread.

n EPC  ATOC | VACL

24 | 56.8% / 97.6 %
50 / 2% | 98.5%
100 / 89% 98 %
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Ramp-Use Lock-and-Return

16



The Hide-and-Seek Environment

v' Main results

Table 2: Results of VACL and baselines in HnS tasks.

| | Uniform RCG GoalGAN AMIGo VACL
Ramp-Use | n=1 |428%+35.4% 31.5%+33.7% 1.0%+0.8% 47.2% +10.3% | 93.3% =+ 5.4%
Lock-and-Retuen | ® = 22) <1% 5.0% =+ 5.1% <1% < 2% 97.3% + 0.1%
n = (4,4) / / / / 97.0% =+ 1.6%
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Conclusion

» Variational Automatic Curriculum Learning (VACL)

d

efficiently solves a collection of sparse-reward multi-agent cooperative

problems

achieves over 98% coverage rate with 100 agents in the simple-spread testbed

using sparse rewards

achieves over 90% success rates on both two games in the HnS scenarios,

including reproducing the ramp use behavior.
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Thanks!

Visit our website for more information
https://sites.google.com/view/vacl-neurips-2021

Jiayu Chen
jiayu-ch19@mails.tsinghua.edu.cn
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